
Technical Report
CMUISEI-94-TR-8

ESC-TR-94-008

May 1994

Mapping a Domain Model and
Architecture to a Generic Design

A. Spencer Peterson
Jay L. Stanley Jr.

Apprication of Software Models Project

A.poved or pbr rembae.
Didribugan urnliitd.

Software Engineering Institute
cm Mellon niU1rs

Pit Wburgh. Pernnsytania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESCIENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 01994 by tarneg ie Mellon University

This maseria may be reproduced by or for the U.S. Govemrmentpuraunto the copyright license under the clause
at 52.227-7013.

This document is available through Research Access, Inc., 00 Vinial Street, Piusburgh, PA 15212.
Phone- 14W4"04510. FAX (412) 321-2994.

Coptes of this document ae available through the National Technical Information Service (NTIS). For inforna-
fe on ordeing, pleu cantact NTIS direcdy National Technical Informaon Serce, U.S. Depanment of
Commerce. Spr4i VA 22161. Phone: (703) 487-4600.

7Wi docunim is ao available through the Defdae Technical Infcrmaion Cener (D•C). DTIC provides ac-
cess to md trUmer ofscien•i•ic sod technical information for DoD pronnel, DoD conuactors ad pottial con-

acuara, and other U.S. Govemmem agency personrne and their contractors. To obtain a copy, please contact
DTIC drecdy Defame TeIlancal Infonnation Center, Ann: FDRA, cameron Station, Alexandra, VA 22304-
6145. Phoae: (703) 274-7633.

Use of my tradmarks in dhs epon is nt imneded in any way to infringe on the rights of the trademark holder.

-7- - - -

Table of Contents

IntroL._,uon and Background 1
1.1 Audience 2
1.2 Purpose 2
1.3 Overview of the Movement Cortrol Domain 3
1.4 Report Overview - How to Read This Document 4

2 Context for the Mapping Process 7
2.1 Using Model' ýc%'are Development 8
2.2 The Domain IMAel FODA Products and Representations 10
2.3 The Architecture -- -ht OCA 13

2.3.1 Overview of the O(,A 14
2.3.2 OCA Components 14

2.3.2.1 Objects 14
2.3.2.2 Controllers 15
2.3.2.3 Imports 16
2.3.2.4 Exports 16
2.3.2.5 Signatures 16
2.3.2.6 Surrogates 18
2.3.2.7 Executives 19

2.3.3 Flow of Control and Data in the OCA 19
2.4 The Generic Design 21

3 Overview of the Mapping Process 23
3.1 Partitioning the Process 23
3.2 Viewing the Process as a Normal S/W Development Process 25
3.3 Use of the OCA in the Development of Reusable Software 26
3.4 Benefits from Reusing OCA Structures 26

3A.1 Consistency of Form Within Applications 26
3.4.2 Separation of Control Flow and Data Flow 27

3.5 Umitations of the Mapping Process 27
3.6 A Roadmap for the Details of the Mapping Process 28

"4 The Domain Design Process 31
4.1 Select Features from Domain Model 33
4.2 Create ObJ(Specictions 34

CMWJSEW4-Th4

42.1 Identify Objects 34

42.2 Derive Object Operations and Input/Outputs 35

4.3 Create the Subsystem Specifications 36

4.4 Create a Surrogate Specification for Each Logical/Physical Device 37

5 The Domain Implementation Process 39

5.1 Identify or Create Applicable System Engineering Units Package(s) 41

5.2 Create Subsystem -Types Package 42

5.3 Create Object Signatures Package 43

5.4 Create Object Manager Package Specification 43

5.5 Create Subsystem/Surrogate Signatures Package 44

5.6 Create Subsystem/Surrogate Controller Package Specification 45

5.7 Create Subsystem/Surrogate Import and Export Packages 46

5.8 Create Subsystem/Surrogate Controller Package Body 47

5.9 Create Object Manager Package Body 48

6 Application Development Using a Generic Design 51

6.1 Create an Application Signatures Package 51

6.2 Complete Packages Making Use of Application Signatures 52

6.2.1 Complete Surrogate Signatures Package 52

6.2.2 Complete Surrogate Controller Package Specification 52

6.2.3 Complete Surrogate Import/Export Packages 53
6.2.4 Complete Subsystem Import Package Body 53

6.2.5 Compete Surrogate Controller Package Body 53

6.3 Complete the Executive Template 53

7 Conclusions and Future Directions 55

7.1 Conclusions 55

7.2 Future Directions 56

7.2.1 Near-Term 56

7.2.2 Long-Term 56

Appendix A The Domain Design Process 63

Appendix B The Domain Implementation Process 65

Appendix C Using a Generic Design in Application Development 71

g ~CMU198-44-"-
c~wsa~m

__ __ _ __ _- *7::

Appendix D Specification Form Templates 75

Appendix E Ada Code Templates 79

Appendix F Implementation Issues Affecting Reuse 91

Appendix G Sample Completed Specification Forms 97

Appendix H Movement Control Example Code 103

Aooession Fol

[TIS GRA&I Or
DTIC TAB 0
Uaannouneed 0
hTst ifI catlon

DIstributiqoj.- A
Availability 0Qede

Avail and,(o
viaa~

CMLVSBI44-TF#4

IVCMU/SEI-94-TR4f

A1 k ~ ~ j r
I

_

List of Figures

Figure 1-1: Roadmap for the Mapping Process 3
Figure 2-1: The Mapping Process - Its Inputs and Outputs 7
Figure 2-2: Use of Models in an Engineering Framework 9
Figure 2-3: Example of an 001 Information Model 11
Figure 2-4: Example Representation of an 001 Features Model 12
Figure 2-5: The OCA Subsystem Model 15
Figure 2-6: Signatures as Conceptual Links to Object Functionality 18
Figure 2-7: Overall Flow of Data and Control in the OCA 20
Figure 2-8: Convoy Planner Generic Design 21
Figure 3-1: Decomposition of the Mapping Process 23
Figure 3-2: Migration of Domain Data to Specifications and Code 24
Figure 3-3: Mapping Design Elements to Process Steps 29
Figure 5-1: Subsystem Implementation Model 49
Figure 7-1: A Development Life Cycle Utilizing the Mapping Process 55
Figure F-1: Tasking Architecture Using a Separate X Event Loop 93

#iICMtvSEI-94-TR-

~4It
I.

vi CMU/SFi-04-TR-3

- - -
iA4_

List of Tables

Table 4-1: Summary of the Domain Design Process 31
Table 4-2: Mapping Domain Model Constructs to Specification Forms 32
Table 5-1: Summary of the Design Implementation Process 39

Table 5-2: Mapping from Specification Forms to Code Constructs 41
Table 6-1: Summary of the Application Development Process 51

•M R-SEI-4-T" A

-.5 - .; Ak,

vimi CMUISEI-94-TR-8

_______ ____v-

Mapping a Domain Model and
Architecture to a Generic Design

Abstract: In contrast to the number of reports on domain analysis, little work
has been done in describing the utilization of domain analysis results in the
development of generic designs for building applications in a domain. This
report describes a process for mapping domain information in Feature-
Oriented Domain Analysis (FODA) into a generic design for a domain. The
design includes supporting code components that conform to the Object
Connection Architecture (OCA), a model for structuring software systems. A
process for the use of the design in implementing applications is included. The
processes andl products described herein augment the final phase of domain
analysis (or engineering) described in the original FODA report. This report
also documents the continuing work of applying FODA to the movement control
domain. The design and Ada code examples for the domain used in the
d&._ment are from prc,.atype software, created in part to test the processes
presented.

1 Introduction and Background

There has been a significant amount of research in the area of domain analysis. [Prieto-Diaz
91] provides an excellent introduction into the state of domain analysis as a software
engineering activity. One important aspect that has been virtually untouched in the pertinent
literature is: how does one select and/or develop a design for use in building applications from
the products of domain analysis? Nearly all domain analysis methods either do not address
this issue at all or assume there is a design to be (re)used from the existing system(s)
analyzed. There is no notion of a generic design that reflects the allocation of capabilities to
subsystems or components at the logical level that is:

"* independent of implementation considerations such as centralized versus
distributed processing, and

"* usable for all systems to be built and maintained within a program family1

from the domain.

This report describes our efforts in this area, which are founded upon the following two
premises:

1. A domain model, the product of domain analysis, embodies the requirements

for software in a domain. 2

1. The term "program family is used as defined in [Pamas 761.

2 The Feature-Orlented Domain Analysis (FODA) method, developed by the Software Engineering Institute
(SEI), is one domain analysis method. It captures and organizes information (especially the requirements) from
existing systems and their development histories, knowledge captured from domain experts, underlying
theory, and emerging technology. FOOA emphasizes the understanding of the commonalitis and differences
in previous and anticipated systems In that domain. The pertinent processes and products of FODA are
described briefly in Section 2.2. A more complete descrpon of FODA is given in J•ang 90j.

CMU/SEI-94.TR-6

-2'i

2. Software architectures 3 exist that provide a framework for generic designs.
Generic designs increase the reusability of software components
implemented to fit within that design by creating patterns for the components.

This report describes a process for mapping domain information captured in FODA models
into a generic design for software in a domain. The Object Connection Architecture (OCA) is
the architectural model used to structure the generic design. The use of the OCA in structuring
software systems is described briefly in Section 2.3 of this report and will be fully documented
in a subsequent report.

1.1 Audience

This report is intended to support current and future users of the FODA method of domain
analysis in their efforts to produce reusable software assets at the design and large scale
component level. Software architects and designers (such as the Core Asset team referred to
in [Withey 94]) will derive the most benefit from the report, as they will be following the process
and creating the assets. Domain analysts will need to be cognizant of the process described
in Chapters 4 and 5 to understand the utilization of the information gathered in the domain
analysis process.

This report also documents the SEI's efforts to utilize the processes and procedures described
herein for the development of prototype software for the Army movement control domain from
FODA models documented in [Cohen 92].

This report is one of four reports which further document the FODA method and its use. These
reports are products of the SEI's continued work in domain analysis and its application within
the software development lifecycle. The other three reports are:

1. Integrating 001 Tool Support into the Feature-Oriented Domain Analysis
Methodology [Krut 93],

2. A Taxonomy of Coordination Mechanisms Used in Real-Time Software
Based on Domain Analysis [Fernandez 93], and

3. Implementing Model-Based Software Engineering in Your Organization: An
Approach to Domain Engineering [Withey 94].

1.2 Purpose

This report delineates a process and products which satisfy the intent of the FODA
Architectural Modeling process and migrates the use of FODA products into the design and
implementation of code. This migration is illustrated in Figure 1-1. It shows that the mapping
process uses domain model and architecture information to produce a generic design that, in
twun, Is used in an application development process to produce application code.

3- The tWrm soiwm arrc e is defined in Section 2.3.

2 CMU/SO-94-TR-s

his",

Mappin Aplcto

Process Generic Aplicaton
Design Code

Architecture

Figure 1-1: Roadmap for the Mapping Process

Although FODA products are assumed to be the inputs to the processes described in this
reports, usable results may be possible through use of the products of other domain analysis
methods. The alternative method used must capture the equivalent information contained in
FODA Domain Model products such that persons attempting to follow the processes can
locate and use the specific inputs for each step. The resulting software structures may be
implemented in many popular programming languages, such as Ada, C, C++, and PASCAL.
The Ada programming language is used in the software examples described in this document.

This report:

"* demonstrates the concept of generic designs for program families,

"* provides practical guidance for the development of such designs, and their
use in building software systems, and

"* advances the state of the practice in Domain Engineering and software
architectures.

The mapping process described herein is intended for use by software engineers who need
to develop a reusable software design and code implementation using FODA product models
as the basis for requirements to be satisfied by software systems in a domain.

1.3 Overview of the Movement Control Domain
Before going into the mapping process in any detail, it is appropriate to provide a brief
overview of the domain from which the examples in the subsequent chapters and appendices
are derived.

CMU/S-E4-TR-8
O44T

Movement Control is the planning, routing, scheduling, control, and in-transit visibility of
personnel, units, equipment, and supplies moving over lines of communication in accordance
with the directives of command planning [USArmy 90]. The most common application within
the this domain used by the majority of Army units is Convoy Planning. The operational
features needed to provide convoy planning capabilities include:

"* Convoy Building - selecting the vehicles for use in transporting whatever is
to be moved and organizing them into a convoy.

"* Routing - selecting a route using the available road network (and potentially
off-road paths), taking into account the capabilities and characteristics of the
vehicles involved.

"* Scheduling - determining the travel time for a given convoy and route
combination, accounting for additional stops as required.

Important data entities for these features within convoy planning include:

"* Units - encompassing personnel, equipment, etc.

"* Road Network - a structure containing information about points of interest
and the roads between them.

"* Schedules - a structure containing information about events, where an event
is a combination of a time and an occurrence of interest.

[Cohen 92] provides a comprehensive description of the movement control domain model.
This description has been given to enable the reader's understanding of more specific issues
in the movement control domain used as examples to illustrate important concepts in the
mapping process.

1.4 Report Overview - How to Read This Document

The remainder of this report is organized as follows:

Chapter 2 lays the foundation for the mapping process by:

1. describing the mapping process in terms of

a. the application of various classes of software models, and

b. how other software engineering processes can apply the different
classes of models in obtaining their results.

2. giving a brief description of the Domain Modeling phase of FODA,
concentrating on the products of interest derived during that phase and
the representation of those products.

3. describing the OCA in terms of its structures and concepts.

Chapter 3 presents the mapping process in terms of the domain model
Information used, the products generated, and the applicability of the
products to the development process.

4 cMuISEI44-Th-8
S.lie

N L R i " . . . ,* - : • ' .•••,.. " : ,' '

Chapter 4 presents the Domain Design process for developing specifications
for reusable domain-specific abstractions from information captured in FODA
models.

Chapter 5 presents the Domain Implementation process for mapping those
specifications onto the OCA as a generic design with supporting code
components.

Chapter 6 describes the Application Development process for the creation of
an application using components built as described and an executive built
using a standardized template.
Chapter 7 presents a bref set of conclusions and a discussion of future
directions for the mapping process.

In addition to the material in the main body of the report, there are 8 appendices whose
contents are described below:

1. Appendix A presents the details of the Domain Design process via the
completion of prescribed forms.

2. Appendix B presents the details of the Domain Implementation process via
creating code units that satisfy the previous specifications through the
mapping of form information onto various code constructs.

3. Appendix C presents the details of the Application Development process for
the use of the generic design and its components in the creation of an
instance that satisfies specific requirements.

4. Appendix D lists the Specification Forms for the Subsystem, Object and
Surrogate abstractions described in the OCA.

5. Appendix E lists the code templates for implementing the OCA abstractions
using the Ada programming language.

6. Appendix F discusses some of the implementation issues dealt with during
the trial usage of these processes, focusing on Ada language interface
issues, and the idiosyncrasies found in implementations of Ada input/output
packages. It also provides some specific examples of *C" code used in the
user interface portion of the movement control prototype used as the example
case in the report, focused mainly on the description of several reusable
abstractions for X/Motif input and output.

7. Appendix G provides examples of completed specification forms for an
example subsystem, object, and surrogate from the Army movement control
domain.

8. Appendix H provides an extensive sample of code from the Army movement
control domain as empirical evidence of the viability of the processes
presented in this report.

CW:I• E14TrR4 5

" --* .- .

6 cLVdwsEI44-TR4e

-r..,..w!!w..wr~~~~~r...-ý - W 5 ~ -- - -~ - - - - - ~ . 4:

2 Context for the Mapping Process

The mapping process for moving from domain models to generic designs is illustrated in
Figure 2-1, in SADT4 form. The major input is the domain model, with its collective information
about the capabilities, data organization, and processing flow for systems in the domain. The
architecture is a control input, because it structures the output, the generic design. The major
resources required are the time of the domain engineers to perform the process and the tools
they use to capture the results.

I Architecture

Domain
Model Mapping Generic Design

"- Proocess N.

Domain
Engineers,

Tools

Figure 2-1: The Mapping Process - Its Inputs and Outputs

The mapping process is a series of both synthesis and analysis steps, which is broken into two
major groupings:

1. Analysis of the domain model and its contents to find:

a. the major physical or logical abstractions that maintain state, the
domain objects, and

b. the group of related features that describe the subsystems which
utilize the objects In their implementatio.

The subsystems and objects are specified using forms (described in the
report) to collect the applicable information from the domain model structures.

2. Mapping of the subsystem and object si icns onto code templates,
usLng the information collected or referenced on th specification forms to-011 the tmpa"s.

4. - 8mr mpa m iqm aanof SADTneWM.

i i 4*- .

This chapter first provides the reader with a brief explanation of the basic theory for software
engineering with models and its applicability to the mapping process. Then the reader is
introduced to the models integral to the mapping process, the FODA domain model and its
products and the Object Connection Architecture.

2.1 Using Models In Software Development

Application of the FODA method results in various products, most of which are expressed in
the form of models. Just as models are the basis for describing domain information, models
should be the basis for describing software designs and for the performance of software
engineering tasks in general. A software model5 is:

1. A view of a domain consisting of abstractions important for analyzing and
implementing a capability planned for a software system.

2. A representation of a system that focuses on a single concern, usually by
simplifying detail.

There are various kinds of models that can be defined for the engineering of software:

Abstract model - A set of concepts, principles, and rules used to prescribe
the structure, allowable content, and key properties of a concrete model. The
set is constructed with the expectation that, through use of the model,
structure and behavior can be added to create concrete models,

The notion of an abstract model is equivalent to that of an abstract class in
Objected Oriented Design, such as described in [Booch 93]. An abstract
model is incomplete when initially defined. It requires the insertion of domain
information to be fully defined.

Abstract models include meta-level concepts that are independent of any
domain. Examples include:

* the notions of Aggregation/Decomposition, Generalizatlon/S calization
and Parameterization, used as the guiding principles for the processes
and products of FODA.6

* the use of consistent form and the various '-ilities' (understandability,
modifiability, etc.) of software designs and code.

* Concrete model - A view of a domain that organizes domain information in
Selments that encapsulate differences among existg and/or poential
implementatons (members of the program family).

* Product - A software system delivered to a customer which contains
nkstances of concrete models

e The dWem on ti secton are tWm from IWley 941

See Ssctn 3.1 of iKi 901 for a morn t•oupi ezpbmn to the onaept ued.

* OMLW/SEI.4-7R4-i+ te11~

This definition of product is not meant to preclude the DoD view of software
deliverables, which includes the development and delivery of specification
and design documentation as Interim products. A software specification can
be delivered containing an instance of a domain model and a design
document can contain an instance of a generic design.

A SADT diagram showing the use of models in a software process is given in Figure 2-2. It
shows that a model-based software process is the result of:

"* using previous information or a model as input,

"* applying a model at a higher conceptual level than the input as a control, and

"* producing as output a model at the same conceptual level as the input.

SControl Model
(e.g., FODA Modeling Concepts)

Input Software Output
Engineering v-

(e.g., Domain (e.g., FODA Domain Model)Information) Process
(e.g., FODA)S~J

Software
Engineers
(e.g., Domain Analysts)

FIgure 2-2: Um of Models In an Engineering Framework

This generalized model-based process is the conceptual basis for an overall software
engineering life cycle entitled Mode/-Based Software Engineerng (MBSE), a concept first
described by the SEI In [Feller 93]. MBSE enables organizations to build software applications
which must evolve with a minimum of rework and scrap to meet changes in mission and
technology. MBSE Involves building models of the requirements and design for a family of
software applications. Application generators and component libraries that support the
software models are also built. MBSE is a focus area for the SEI's Engineering Techniques
Program and is the subjedt of a recent SEI report [Withey 94].

COMWSUI-44.TR4 S

7A4

The usage and reification of models from abstractions to domain specific concrete models and
on into delivered software products is the fundamental process in MBSE and occurs in many
forms. Concrete models are created from the application of abstract models, and products are
derived from concrete models. As an example, FODA Is the applk tion of domain modeling
concepts (at the abstract level) to information on existing systems and new technologies. This
process Is shown in the italicized notations on the named flows and process box in Figure 2-2.

The mapping process shown in Figure 2-1 supports this notion of model-based software
processes. The architecture, used as the control input, is an abstract model which is applied
to the domain model to produce the generic design output. In Chapter 3 of this report, the
mapping process will be refined using this model-based view.

To better understand the mapping process, the models used as its input, control, and output
(FODA products, the OCA, and the Generic Design, respectively) are described in the next
three sections. The resources (Domain Engineers and tools) are not further described in this
report.

2.2 The Domain Model - FODA Products and Representations

The FODA method, as described in [Kang 90], describes three major products created during
its Domain Modeling phase. They are:

1. The Information Mode/,7 which captures and defines the domain knowledge
and data requirements that are essential in implementing applications in a do-
main.

2. The Feature Model, which captures the end user's understanding of both the
general and specific capabilities of applications in a domain and describes:

a. the context of domain applications, depicting the variability of the
users and environment for applications in a domain,

b. the needed operations and their attributes, and

c. representaIn variations.

3. The Operational Moda/,8 which identifies the functionality and behavior (both
commonalities and differences) of applications in a domain. It provides the
foundation upon which the software designer understands how to provide the
features and make use of the data entities In the previous two models
described.

[Krut 93] documents the use of a tool to capture the products of the FODA domain model. The
tool Is "=V1" from Hanilton Technologies, Inc., documented In [001SRMJ. Since this tool was

7. EmaW rVtep usd Wih term hlt-tRelmtiNp Model, but an ER model is only one fomit for an indomatlo
ModeL. A nt Me w4emi lodor dn maol am awlrw ormatm.

IL ErI reprs usWed Vtetrm Funawtonu Model.

10 CLJMEI94-TR-8

--v

used to represent two of the three domain models, the pertinent 001 notation will be briefly
explained in the following paragraph and examples of its use will be shown.

The basis of FODA Information Modeling Is composed of two basic relationships: the Ia and
consists-c. 9 The is-a relationship is further refined by adding a third relationship, the Is-set-
of. Using these relationships, the entities used to describe the information content of a domain
are described and organized. Such an organization can be shown using the 001 notation as
described below.

S PDN(tupleot.3) I h~i@_lnWliqgenc&(tpleo&:)

fout(trafn apoimtonjnMtWlgno@(tup4.af:3)

.qulpknlr) networks(oaetoI

toem-sem~tupleot3) auIpplF.POlntl(oDelof) network-.~mennte(deflnweds: roadIonfokmato)

Figure 2-3: Example of an 001 Information Model

The 001 TMap (or TypeMap) provides a tree-like structure with each node corresponding to
an object type. Figure 2-3, shown above, depicts an abbreviated version of the Information
Model for the movement control domain. The TMap enables the modeling of the
decomposition of objects using sets, arrays, trees, classification, reference, extension, and
primitive types. These, in turn, map readily to the constructs and semantic notions of many
programming languages. The concepts of generalization, aggregation, and attributes were
transformed using the TupleOf, OSetOf, and OneOf abstract types within the 001 TMap syntax
as follows:

The decomposition of a parent object into different component parts (children
types) was represented by the TupleOf abstract type, representing the
semantics of the record construct. These component parts may be objects of
the same type or objects of different types.

"Se SSCiM 5.2 of (KMg 901 for a more duled dmue"Mon of w umge of thee o Larus in FODA.

CMW/SE44ThS 4,;

4'r L - L

Alt* r

"* The one-to-many, parent-child relationship was represented with the OSetOf
abstract type. The OSetOf abstract type represents an ordered set of objects,
containing zero or more objects of the same type. The OSetOf type can be
implemented in any number of ways; lists and arrays are two examples.

"* There exist entities (or objects) in which there are many possible children
types yet, when an object instance is created, exactly one of the child types
exists. These are represented by the OneOf abstract type. Languages that
support variant structures readily implement these semantics.

To use an 001 model, the user (or tool using the internal representation) traverses the tree and
uses the semantics corresponding to the 001 type at each node to understand the model and
its contents. For example, the movement control environment, shown at the top of Figure 2-3,
consists of six data aggregates, as represented by the TupleOf notation. One of these, the
distributionplans entity, consists of two items. The TCP (the Traffic Control Plan) is shown as
an OSetOF of designatedroutes, describing the notion of a collection or subset of the
available roads which will be placed under specific control to regulate their usage. Under the
transportation subtree and its methods branch, the four entities shown with the boolean
options describe the notion used to the optional incorporation of road, water, rail, and air as
transport mechanisms.

The 001 notation fully represents the semantic model concept of the FODA Information Model.
The semantic model captures the bulk of the data requirements for the domain.

mommniot(tupwoe.4)

convoy~juiiding(tupleof:2) highwa7 7aul\lo(tupbgol.2)

cohxm -1~ornulisd~ llon •.4) / deps d Lnteynbl(booben)

"Fie :ng q*•na n 1-3) tum s a

- 'N del@nwatV sooolee

F~gur 2-4: Example Represenftatdfon of an 001 Feature Model

12 CMU/SBI44-TR-e 8

"7IY"
• • '• , ,* C

The 001 TMap notation is also used to represent the features model. Figure 2-4 on the
following page depicts a portion of the movement control features model, focusing on the
features relevant to convoy planning. The features were identified and structured as optional,
alternative, or mandatory as described in the FODA method, in the following ways:

e the optionalfeatures are modeled as leaf-node objects of type Boolean; this
allows their later designation of their usage with True or False selection,

o the alternative features are modeled as a OneOf abstract type, which readily
captures the notion of alternative,

* and mandatory features as a TupleOf abstract type.

Since a TMap follows the same tree-like structure as the baseline features diagram, the
concept of "reachability" defined in the FODA report is maintained within a TMap.

The Operational Model is captured using any number of CASE tools which allow for the
integrated definition of the functional and behavioral characteristics of applications software in
a domain. The SEI reports cited previously describe the use of various tools to support this
model.

Now that the pertinent FODA products have been described, it is time to discuss the
architectural concepts needed to produce a generic design. The concepts are embodied in the
OCA, which is the subject of the next section.

2.3 The Architecture - The OCA

In [Shaw 90], the term software architecture is defined as: a software design at a level of
abstraction that focuses on the patterns of systems organization that describes how
functionality is partitioned and how those elements are interconnected. There are two key
parts to an overall organizational pattern, a partitioning strategy and a coordination model.

A partitioning atralegy is the criteria used to decompose large software problems into
smaller subproblems and the allocation of those subproblems to software components that will
solve them.10 In the OCA, the partitioning strategy is realized by building blocks such as
subsystem and surrogate structures and their components, and the executive. The

o a model is the glue that binds separate activities into an ensemble [Gelemter 92].
In the OCA, the coordination model is realized in rules and templates that determine how the
building blocks interact with one another.

A key attribute of a good architecture is the separation of the coordination strategy or model
(the flow of control through the software, or mission) from the providers of operations or
services (the building blocks or components). This separation:

* allows a change in operation, or service provided (potentially due to a new
piece of equipment or information), without requiring a change in the existing
mission software, and

'o. S. [Abowd 031 aO [USAF 93J.

CMUI/5E-4-TR-e 13

allows a change in the mission without necessarily requiring a change in the

service providers carrying out that mission.

Because of the clear separation between the partitioning strategy and coordination model,
program families can be designed using the OCA that are highly modifiable with respect to
broad classes of change. The next section presents an overview of the OCA, focusing on the
partitioning strategy and coordination model embodied within it.

2.3.1 Overview of the OCA
The OCA1 1 is an abstract model that provides an architectural pattern for the packaging of
software. The architectural pattern embodied in the OCA allows software developers and
reusers to distinguish the design and packaging of the service providers and the code
elements that are mission oriented. The three architectural elements are called:

1. objects (service providing elements)

2. controllers (elements that embody a mission through use of objects)

3. executives (mission activator elements)

The architectural elements of the OCA and the components used to implement the elements
are described further in the following paragraphs.

2.3.2 OCA Components

A controller and its associated objects are called a subsystem, a single product or family of
products whose definition is wholly self-contained. The subsystem model is an essential
element to understanding the OCA and is illustrated in Figure 2-5. The components of the
subsystem model, Objects, Controllr.s, Imports, Exports, and Signatures, are described in the
order given. Then a variant of the subsystem, the surrogate, is described. Finally, the role of
the executive is discussed.

2.3.2.1 Objects
An object maintains state information about the behavior of a real-world or virtual entity. The
kinds of real-world objects that can be modeled are things like engine parts, i.e., cams, pistons,
rings, and lifters. On the other hand, an object can model a thing that is not physically
realizable, such as a map that depicts the roads in an area. An object, when implemented,
performs two important functions:

1. it provides services through internal subprograms, and

2. it maintains a readable state.

"The OCA is band upon the Objec Connecon Update (OCU) paradim deveod by the Ada Simulation
Validation Project (a funded SEI projec from 1967 to 1989) sponsored by the U.S. Air Force Aviation Systems
Command (ASC/T) and described in (Lee 86M. Parts of this paradgm have been incowoae into the
Shxtral Modeng proes and framework dcribed in [Abowd 93] and (USAF 93."

14 CMU/SE••I4-TR'6

Import Signatures Export

J.1
Controller

Signatue

f Control Flow

Separation
of Concerns ObjectData Flow

Spec[fication

mmplementation With/Include
Relationship

Figure 2-5: The OCA Subsystem Model 12

The implementation of an object is abstracted through a manager. An object manager
maintains a consistent procedural interface to the underlying representation of an object via
recurring patterns for.

"* the procedure names for its operations, and

"* its usage of data passed as parameters.

Thus, no matter how the object changes the implementation of its operations or its internal
representation, the operation names and their data inputs and outputs available through the
manager should not change for a well-defined object.

2.3.2.2 Controllert

As an engine is an aggregate of its parts (the cams, pistons, rings and lifters), a controller
aggregates objects to form a cohesive subsystem. A controller is the locus of information
pertaining to the subsystem's mission, i.e., the specific activity or task with which the group of
objects is charged (an engine provides rotational torque and power to the remaining drive train
subsystems). A mission is a bounded activity within a single domain of expertise. The mission
of a subsystem is captured in:

iZ In Vhe gure, the ine Itng tq e fCon, oe and Ifnpo comnponnts is usd to depict the swpamtn of
concerns between the spe•cition of the calble interface and Owe Impementation ta each owmpnet

CMU/SEJ04-TR- 15

: ,7 . 7,, .- , ,,;•,,: ~ • -,-77 7

* what objects are needed to perform a cohesive set of related operations at a
level of abstraction above individual requirements (or low level features),

* where information inputs and outputs are located, and

* when low-level operations are invoked and in what order.

The controller is used to drive the subsystem, including the management of interactions
between the objects within the subsystem and the usage of data elements via use of a set of
explicit constructs for data transfer, the import and export structures. These two structures are
described in the following two sections.

2.3.2.3 Impurts

The import structure:

"* is the locus of other subsystem state data needed by a subsystem to achieve
its mission.

"* collects state data from other subsystems' export areas needed to achieve a
subsystem's mission.

"* maintains separation of concerns between subsystems and their objects.

The import structure defines the interface for data input from the other subsystems. The
controller accesses input data needed for object operations via this structure, thus the control
flow from the controller to the import structure and the return data flow illustrated in Figure 2-5.

2.3.2.4 Exports

The export structure:

* is the locus of a subsystem's state data needed by other subsystems to
achieve their missions.

* provides storage area for a subsystem for data reflecting the state of the
subsystem's mission.

* allows access to required state data without requiring access to the object.
The export structure defines the data output interface for use by the other subsystems. The
controller places the required results of invoked operations into this structure, as indicated by
the control and data flows from the controller to the export structure shown in Figure 2-5.

2.3.2.5 SIgnatures
Signatures are a powerful mechanism for abstraction in the OCA; they are a formal
representation of the interface to components (objects, subsystems, and surrogates) that
provide services.13 Signatures play a major role in how the high degree of separation of control
and data flow seen in the OCA is achievable in practice.

'3 [Srinivas 911 describes the concept of signatures as a means of describing the key notions of domain entities
as names and how the names form a ocabulary for describing a domain. Signatures were cited as the most
fundamental of the three Ingredients in the specification of a domain, as they are used whi the axioms
(fomwlas) and models in an algebraic speciication. Signatures am lso described as a useful notion when
atemnPng to Identy a componen reuse potential in VZaremsld 9q1.

6 cCMSU/8I-94-TR-8

For objects, Signatures consist of information about the details of the functionality, in particular
the processing options, provided by the object's operations. Object signatures contain abstract
names for the services (and their underlying algorithms) provided by the objects, and hide the
mapping of the abstract service (and the selected name) to the implementation of the service.

In this way, implementations may change and alternative algorithms may be selected by
various users with minimal effort because users access the services through the logical names
provided by the signatures rather than directly.

For subsystems, the Signatures include:

"* Object Signatures information that must be visible to other subsystems,
surrogates, and the executive,

"* the names of all of the data items accessible individually and by aggregate
via the subsystem controller operations,

"* names for the internal state of the subsystem, used by the executive, to
control overall system flow.

The signatures for surrogates are equivalent in content to those for subsystems.

Subsystem signatures allow the use of a subsystem's operations without explicit reference to
(or knowledge of) the underlying objects comprising it, the specific features they provide, or
even the names that have been chosen to represent the services at the object level. A
signature for a subsystem may provide varying degrees of abstraction; the most trivial (and
least abstract) subsystem signature contains the union of the signatures of each object in the
subsystem. More sophisticated subsystem signatures provide higher-level services by
mapping simple names onto:

"* services provided by objects,

"* specific instantiation of services provided by objects, such as an invocation
of an object's services with a specific set of parameters, or

" complex sequences of the object-provided services.

For example, an object might encapsulate a database that represents a terrain map of a
particular area. Its signature might include facilities for returning the height above sea level at
a given location, each facility with different accuracy and computational characteristics. This
signature would remain stable even if the database were replaced with one of less resolution
that might require the object to extrapolate among the heights or nearby coordinate locations.

Additionally, this database object might be part of a subsystem that computes the as-travelled
distance between two points. The signature for the subsystem might represent a service that
returns the distance, given the starting point and destination. This signature may, unknown to
those outside the subsystem, map to a series of object operations, such as deriving a point-
to-point routing along roads between the given points or calculating distances.

c -sEI1-94-TR-8 17

Signatures provide a conceptual link from the executive to lower levels of functionality that is
independent of the implementation of that functionality. Figure 2-6 illustrates this linkage. The
dependency links depict the incorporation or usage of a Signatures structure by another
structure and are shown by the solid arrows. The dashed arrows in the opposite direction
reflect the visibility of the Signatures names to the structure using them. With the transitive
inheritance of the Object Signatures (via the Subsystem Signatures) into the executive, the
executive now has sufficient visibility to invoke object operations in the desired manner, thus
the conceptual link between them. Only those parts of the Object Signatures needed by the
executive are required to be passed along by the Subsystem Signatures. These are the names
of those low-level processing options that must be visible to the executive (for any number of
reasons). The names provide a sufficient description to express the semantics of the option
without violating the coordination model, where rules explicitly prohibit invocation of object
operations from within the executive directly.

-- O DeUpenw ink Executive

pi'.nae veirtydL

Igaue Signnaturesigaue

Manager •Manager

Figure 2-6: Signatures as Conceptual Unks to Object Functionality

Sections 5.3 and 5.5 describe specific examples of the uses of signatures for objects and
subsystems, respectively.

2.3±6 Surrogaes
An important variation of the subsystem, the surrogate, is used to aggregate information about
physical or logical devices with which the application is to interface. These devices include:

* file systems or databases,

* other computers via hardware devices and software protocols, and
* human users via devices ranging from dumb terminals and keyboards

through bitmapped displays with pointing devices and sophisticated
graphical support packages.

8CMUISw6044-T

SAL

The word surrogate Is defined in [AHD 85] as: one that takes the place of another, substitute.
The most important goal of the surrogate structure is to provide a sufficiently abstract notion
of the logical device as to allow for the substitution of different physical devices or
implementations (i.e., different operating systems and file structures). If a device is sufficiently
well abstracted, then exploiting its capabilities in applications is only a matter of:

e characterizing the physical attributes of the actual device to be used in a
specific application, and

e characterizing the data to be handled by the surrogate for the application.

The key differences between subsystems and surrogates lie in two major areas:

1. Surrogates are intended to be domain or product line independent, at least to
the level of the format of the data types provided within the application. This
domain/product independence also extends to the consistency of the names
for its operations, versus the domain specific operation names used within
subsystems. The notion of names for subsystem and surrogate operations is
discussed further in Sections 5.4 and 5.6.

2. A surrogate structure may be incomplete. For example, an input-only device
will not import any data and an output-only device will not export any data to
be used by other subsystems. It is expected that all subsystems will require
both an import and export structure to be fully specified.

The overall structure of surrogates is equivalent to that for subsystems. They contain
controllers, imports, exports, and a signatures structure at the controller level. The objects
underlying surrogates, the handlers and transforms, are structures that provide the necessary
interfaces to the device(s) and the functionality to implement data exchanges between the
application and the device(s). The intemal structuring of surrogates into handlers and
transforms is discussed further in Section 5.8.

2.3.2.7 Executives

The executive provides the operating environment for the subsystems within the application
and, in most cases, is the arbitrator over conflicts between processes competing for time and
access to shared resources. The executive monitors and controls time for subsystems and
monitors interfaces to external entities such as hardware devices, other computers, and
humans, i.e., application users through the surrogates. The role of the executive in the overall
flow of control in the OCA is clearly described in the next section.

2.3.3 Flow of Control and Data In the OCA
When the OCA is used consistently as the basis for implementing the operational aspects of
a domain's features, the resulting subsystems and surrogates can be readily combined into
complete applications with an executive. The executive provides the appropriate level of
control over the application via the subsystem controllers. Yet, because of the use of the
Signatures structure, the executive has no visibility to the data needed in the application, thus
achieving an knpotant separation of concerns in the resulting software. The flow of data and
control Is Illustrated In Figure 2-7.

CMUSEJ404-TR.6 19

,,4:

The solid arrows show the flow of control within the system. Except for the handling of error
conditions and the surrogates providing feedback, control always flows downward.
Subsystems do not make calls to other subsystems or their objects. Calls to objects are made
only by the appropriate subsystem controller. This standardizes the control flow which
increases the understandability and maintainability of the software. The objects and
subsystems also have mechanisms for error handling and recovery which will be discussed in
detail in a subsequent report.

The dashed arrows indicate the flow of data between the subsystems. Data placed in a
subsystem's export structure is available for use by other subsystems via their respective
import structures. Export structures have no knowledge of where their exported data are used.

It is the responsibility of the import structure, when implemented, to know where to get the data
necessary to provide all required inputs for the subsystem's operations.

eueExecutiver

---- -- ----- ®

m ainiContron .

* c~~~~~~~~
~~~~ontrolleragrgtobetanmaaecnetosbtenhmbsd

"upondier a rcosay

Figure 2-7: Overall Row of Dast and Control s tIe, OCA

In summary, the OCA is an architecture that allows one to specify a generic design for
software systems using objects managed by controllers under the direct supervision of an

S~executive where:

S• ~objects model the behavior of real-*wor (or virtual) components and

mn maintain state.

20 controllers aggregate objects and manage connections between them basedi upon a reaction strategy.

S•* executives manage the subsystem and surrogate controllers, time, and the
a&pplication state to provide acceptable response to stimuli.

A discussio 01 some* of the benefits the OCA provides In application development and
nalintonance Is 911Mn In Section 3.4.

20 CMUISSB-04-T1R-8

* . .~J~9~77 ~,'.~ -. ~*

-~ *j~ :*iL



2.4 The Generic Design

The resulting output of performing the mapping process is the generic design. This design may

take many forms, depending upon the architecture used as a control. The important concept

is that the generic design is a domain dependent instance of the selected architecture. It

should always to possible to recognize a generic design as an instance of architecture X, if
that architecture has a well-understood partitioning strategy and coordination model as
described in Section 2.3.

For example, Figure 2-8 depicts the top-level structure for the convoy planner prototype

application developed by the authors during the initial execution of the mapping process. The
use of the OCA is readily apparent in the designation of subsystems and surrogates, and in
the uniform flow of control between them and the executive. Appendices G and H further
reflect the use of the OCA, as they capture instances of use of the specifications forms and
templates as represented in Appendices D and E, respectively.

] Graphical Data
Terminal DataStorage

Xmhotif DBIFile Access

User rIterface Mapper Data B ase

Status

-1"Executfive sot

Flo subsyste I I I
Flpur 24: Convoy Plne Genwic D@elgn

"cM""9EI44-TIr 21

r'r!:

4.. .. ..... ii = ~ i l l i ll- l.ib il iri . .



In describing the usage of models in software engineering and the role of the domain model
archecture and generic design, the context for understanding the mapping process is
complete. The next chaptr provides an overview of the mapping process, including its
appicabflty and limitations.

I CMUw-O4.TR4



3 Overview of the Mapping Process

Previously, the mapping process has been described using a SADT view of a process with
input and output products as various kinds of models.14 Now that the models pertinent to the
mapping process have been described, that view can be refined to focus on the use of those
models within processes that together describe the entire mapping process.

3.1 Partitioning the Process

The mapping process has steps that apply to both the Domain Engineering and Application
Engineering processes as described in [Withey 941. Figure 3-1 shows an expanded view of
the mapping process with three subprocesses illustrated:

1. Domain Design, which takes a Domain Model as input and applies a Parti-
tioning Strategy from an Architecture as a control model to produce a Generic
Design.

2. Domain Implementation, which takes a Generic Design as input and applies
Code Templates and Design Rules from an Architecture as a control model
to produce the Supporting Components (for the Generic Design).

3. Application Development, which takes a set of Components and a System
Specification as input and applies Rules and Code Templates to produce the
Application Code.

Partitioning Architecture

Modelmomain enerinDesig

D g ITemplates/Rules

Application

igum 3-1: Decompoklon of tw Mappi-g Prmm

" seeFgro,, 2-1 an po 7,d Fn, 2-.2 on po.

4N 1 2



The Domain Design and Domain Implementation processes together form the mapping
process which is the primary focus of this paper. However, these processes do not present a
complete picture in that there is no process pertaining to the use of the resulting concrete
models (the design and components) in the development of application products. The
Application Development process is intended to complete the process of migrating domain
knowledge into delivered products in a systematic manner.

Chapters 4 through 6 define a series of steps, segmented into three processes as summarized
above. The goal of the Domain Design process is to collect the information needed to develop
the package structures that implement the OCA. This information is collected onto a set of
forms (shown in Appendix D) that will be the major inputs for the Domain Implementation
process. In Domain Implementation, a set of code units (Ada package templates are shown in
Appendix E) which implement each subsystem, object, or surrogate defined during the
Domain Design process. Chapters 4 and 5 describes these two processes.

The Application Development process takes the user through some portions of the process of
using the completed or partial components to develop an application within the domain.
Chapter 6 describes this process.

Domain Model Specification Source Code
Information Form Construct

Features Controllers
Descriptions . Subsystems CinaturesTop-Level -Types
Low-Level 

Typ es
Imports

Information Exports

(E/R Data) • Objects , Mnages

Operationa gnatures

O" Executive

Domain Design Domain Implementation

Figure 3-Z Mig9tWo of Domain Da•t SpecfIcaio and Code

Figur 3-2 Illustrates t overall flow of the mapping process, showing the transitions from the
domain uuode to code via the use of the specification forms. Note how, during the Domain
Desig prcess, the specification forms gather Information from diverse sources via the
mulipl models tha ollectiey denote the domain and then how that information is

24 CMLY81"4-TR4

.4



repartitioned Into multiple code units during the Domain Implementation process. This is
similar to how requirements documents are written for systems, gathering information from
diverse sources into a single document (or set of documents), and how those documents are
used. This similarity and others within this development process are the focus of the next
section.

3.2 Viewing the Process as a Normal S/W Development Process

The mapping process is analogous to the generic software development process of producing:
1) a specification, then 2), a design that meets the specification, and finally 3), code that fits
within the design. The analogy holds because:

1. the Domain Design process provides specifications for subsystems,
surrogates, and objects to fit within a generic design. This process links
together portions of domain models products into descriptions via forms
suitable for further refinement. The specification forms serve as the
requirements for the software entities to be developed.

2. the Domain Implementation process provides detailed designs for
subsystems and surrogates that satisfy the specifications from the previous
phase. These designs are instances of the OCA subsystem model, using the
components described in Section 2.3. Although the production of code via the
use of templates is the focus of this process, the code is not tied to any
specific application but is meant to be usable by all applications requiring the
capabilities of the subsystem or surrogate.

3. the Application Development process provides code for an application that
conforms to the OCA. This process binds together the subsystems and
surrogates, completing those portions of their code components left
incomplete from the Domain Implementation process, according to the
requirements of the application in terms of hardware (specific devices),
software (specific capabilities or features), and desired performance
characteristics. This process also involves construction of the executive,
which has its own template and guidelines for its completion.

This analogy is important because it links the mapping process to the conventional software
development process as practiced in most organizations. Hence, the mapping process is not
costly to implement in their overall process. This realization within an overall software
development should ease the organizations's transition to use of this process. Transition
planning for this process is discussed extensively in [Withey 94].

The next section describes how the mapping process and its use of the OCA applies to the
problems of developing reusable software.

CMUW/SE-W.T 25

-~ .- '1* *~ 

4 4



3.3 U.s of the OCA in the Development of Reusable Software
The OCA Is a model for organizing and implementing the structure of an application. Its focus
is on the high level problems of control and data flow within systems, and not on the
implementation of low-level functionality. The data flow is controlled by the import and export
structures via the controllers; the main flow of control is handled by the executive.

The executive is designed to be a control structure for execution of an application using the
OCA's subsystem model. As such, it does not have any visibility to data items being used
within the application and, therefore, needs access to only the Signatures and Controllers for
the subsystems and surrogates that compose the application.

The executive is built around the consistent usage of layered case statements. These layers
provide a regularity of form within the code that results in an executive with a highly readable,
understandable, and maintainable structure. The fact that the subsystem is used as the
outermost layer of the executive's internal structure provides the developer with an easy
mechanism to add or remove a subsystem; just add a new layer of template and complete it
for a new subsystem, or delete the entire case layer and references to its operations in other
layers to remove it. Appendix C.3 further describes the layers of the executive.

The OCA also provides applicable guidance in the structure of code for subsystems and
objects. However, the OCA does not enforce any style for components below these
abstractions. This does not mean that there is no appropriate guidance on how to implement
components at lower levels. Many object oriented design (OOD) methods exist that can be
used to create highly flexible and, hence, reusable components that would be applicable for
use within the OCA. Section 5.9 provides further insight into a five-layered scheme for
subsystems and their objects using abstract data type (ADT) packages and instances of them.

3.4 Benefits from Reusing OCA Structures

There are two major benefits to the use of the OCA In developing a generic design:

1. consistency of form within applications, and

2. separation of control flow and data flow.

Each of these benefits is discussed in the following paragraphs.

3.4.1 Consistency of Form Within Applications
The use of templates for code and the rigidity of the OCA in terms of code structure may be
foreign to many software developers who are used to developing in an individual or project-
specific style. However, once developers become familiar with the usage of the OCA, then
they wil find that it provides a solution for most design problems. Think about how much time
designers have used answering the question "How do I want this system to look?" The normal
answer is some ad-hoc decompositon whose justification only exists in the developer's mind
and will probably never be will understood by future maintainers. The OCA forces the
developer to ask a different question: "How do I design this system using the OCA?- The OCA

2- CMWSS4T4 r



provides a look for a system, and this look is consistent for all systems using the OCA as an
design basis. This means maintainers can make important assumptions about how a system
does what it does, and can focus on understanding what it does, vastly simplifying the
maintainer's workload.

3.4.2 Separation of Control Flow and Data Flow
The OCA is designed to separate the flow of control (what subprograms get called in what
order) from the flow of data (where are the required inputs and where do the results get put).
Control flow is implemented in:

"* the Executive

"* the Subsystem and Surrogate Controllers, with support from the Signatures
packages

"* the Object Managers and the packages they use in their implementation

On the other hand, data flow is implemented in:

"* the System Engineering Units and Subsystems Types packages which
declare the types

"* the Export packages which declare the variables/objects of the types

"* the Import packages which map data type usage to available Export
variables/objects

"* finally as parameters to Object subprograms and their underlying
implementation

This clear separation of concerns produces an application with control and data flow
responsibilities being relegated to distinct sections of the code structure, again aiding
developers and maintainers in understanding the system and where changes of various kinds
go within the code modules comprising it. Thus, the OCA provides a consistent system
architecture that makes the post deployment software support process a much more
manageable task and makes for longer lived systems with lower costs.

3.5 Umltations of the Mapping Process
At the highest level, the mapping process is highly dependent upon the abstract models that
are applied to create the resulting concrete models. The process would need some
modification to incorporate the use of different domain analysis products. The OCA is only one
instance of an abstract architectural model that could be applied to produce a generic design.
The mapping process could be very different depending upon the kind of architecture chosen
because the later steps depend heavily upon use of design rules and code templates
asoclated with a specif architectural model. The OCA has a well-defined component
structure, In terms of kinds of components and their Interactions. This leads to a number of
code templates to support the component and corresponding interaction rules. A more
loosely debied ardteclure may have few supporting templates and rules. More work needs
to be done to determine the applicability of this process when appied to different architectures.

CNI/l-04.TIN4 27

A--.



The mapping process does not fully specify all of the decision making logic needed to
implement the process in an organization or for a particular project or application. Synthesis
steps, where disparate pieces of information are combined together, are generally complete
in that the steps state what information is being combined and the form of the result is well

understood. The analysis steps, however, are more heuristic in that they provide insight into

the intent of the step and a characterization of the desired output, but no precise rules can be
given for making specific decisions.

Use of the OCA limits the use of certain programming paradigms in the implementation of
subsystems and their objects. The internals of objects must be passive in that they cannot
invoke functionality except within their own scope. It is the role of the subsystem controller to
coordinate the interaction of its objects; the executive coordinates objects in different
subsystems through the controllers. In object-oriented programming (OOP) terms, methods or
operations cannot call other methods/operations. This is to reinforce the notions that objects
are only service providers and that they can take no active role in the application's control flow
beyond their limited scope.

3.6 A Roadmap for the Details of the Mapping Process

To this point, the focus of this report has been on a general description of the mapping
process, a context for its applicability in Model-Based Software Engineering, and an
understanding of the kinds of models needed to describe and implement the process. With this
done, the reader has a sufficient understanding of the goals and intents of the mapping
process and the details of the process can be given. Chapter 3 begins the description of the
process at a detailed level.

The use of domain analysis products to develop designs and supporting software components
prior to their use in individual applications is commonly referred to as Domain Engineering.
This chapter covers the steps in the core of the mapping process, which is applicable to
Domain Engineering. The processes and steps in this chapter are meant to be performed
apart from Application Engineering, which embodies individual product development.

Chapters 4 and 5 delineate the steps to support the Domain Design and Domain
Implementation processes, respectively, as seen in Figure 3-1 and introduced in Section 3.1.
The FODA domain model provides the inputs and the OCA's specification forms, code
templates, and design rules serve as the controls for the domain engineers who produce the
generic design and its supporting components.

Figure 3-3 on page 29 presents the OCA structures and the process steps discussed in
Chapters 4 through 6. After selecting the capabilities to be mapped (described in Section 4.1),
Figure 3-3 Hlustrates the use of specification forms that map the relevant information from the
domain model using steps in Sections 4.2 - 4.4. The forms then map onto the set of code
components seen In Figure 3-3 by performing the steps in Sections 5.1 - 5.9 and in Chapter
6. Each form or code component used (starting with the templates in Appendices D and E) is
marked with the step or steps relevant to its use.

2 CMU/SS-94-TR-8

i- 44 '



*0 - I-- --- ---- -- ----- -------

00

:U.

,.0 •

(V, a

'i C%
0, a

CC6

C E
U) L)

0 Uý

F-S

* x I0I• c ":• • ' "

'0. 1_ _ _ __._ __• •

00
xU

.2 1I IIs•- , I

U) I
e ------- ---- ----- ---- ----

CMU/SEI-04-TR-6 29



S30 CMU/SEI-94-TR-8

p -30



4 The Domain Design Process

The Domain Design Process for subsystems and objects that fit within a domain-specific
generic design consists of 4 steps, shown with a summary of their actions and products in
Table 4-1.

These steps map various portions of FODA concrete models onto appropriate sections of
specifications forms for subsystems and objects (see Appendix D, Sections D.1 and D.2,
respectively, for examples of these forms). This mapping is summarized in Table 4-2.

The goal of the specification forms is to provide the software developer with access to the
information needed to implement functionality. They are designed with the assumption that a
domain model is in place. Therefore, except for information that can readily be transcribed in
a succinct way, they provide references to information within the various products of a FODA
domain model. The forms provide pointers to information elements about data, capabilities,
and behaviors from the Information, Features, and Operational Models, respectively.

The steps listed in the sections below are given in the order in which they should be performed.
The only notable exception is that the creation of subsystem and surrogate specifications,
described in Sections 4.3 and 4.4, can be performed in either order or concurrently.

Step Action Product

1. Select Features from Identify desired features from features List of desired features
Domain model, i.e., operations, context, and

representation.

2. Create Object
Specifications

1. Identify Objects Identify data items maintaining state Initialized Object Form,
or requiring explicit control. Entity List

2. Derive Object Analyze features model for operation Completed Object Form
Operations and variations based on alternatives or
Inputs/Outputs context and shown in operational

model.

3. Create Subsystem Group together objects that work Completed Subsystem
Specifications together, correlated to set of related Form

features in features model.

4. Create Surrogate Determine external interfaces for Initialized Surrogate
Specifications for appfications and determine their Form
Devices control and data characteristics.

Table 4-1: 8ummary of the Domain Design Process

S•'::" 1 "TR4 31
OUS F. !

A ,-A -



Domain Model Information Subsystem Spedflcation Object Specification
Form/Section Form/Section

Features
Descriptions Description Requirements

Requirements Exceptions
Exceptions

Top-Level Features N/A

Low-Level N/A Features

Information (EIR Data) Objects Name
Imports Description
Exports

Operational Imports Imports
Exports Exports

Exceptions

Table 4-2: Mapping Domain Model Constructs to Specification Forms

The description of each step in this specification processes is given at a level above the
clerical work of completing the specific forms. Each step will be described as follows:

"* its name will be given (in the title for the section),

"* a summary of the action(s) taken in the step,

"• the input(s) used in the performance of the step, and

"* the product resulting from completion of the step and how it contributes to the
process.

Appendix A contains the details of the work to be completed at each step of the Domain Design
process concerning the use of the forms. Its sections are numbered to correspond to the
equivalent step in the following sections.

Step 0 - Establish an Overall Goal for the Mapping Process

Before beginning the mapping process, it is important to know what the major goal of the

process is, because various alternatives exist:

1. One can pursue a limited set of features that map readily to a core set of ca-
pabilities that are to be used in a product or as a domain demonstration (as
done in the movement control example). However, the exclusion of features
(those not selected) may impede the ultimate reusability of the software if and
when those features are later desired.

i 32 CMU/VSB-94-1"P•::

* cMLUSI4"-44-



2. One can include all features of major capabilities into the process, which can
lead to the most robust and reusable design poseible. The development of

such a design and its components would be a very difficult task because ofthe complexity of implementing and integrating the use of a potentially highly
diverse set of features and underlying objects.

These two extreme, building In only what you need (as in 1.), and buidng in everything you
could ever want (as In 2.), have different success criteria and cost versus benefit tradeoffs, as
briefly described above. In an organization transitioning towards MBSE, the model may be to
start more with a "build in what you need" goal as a start to build a reasonable set of core
components, transitioning to "build in everything" as your organization and product line
knowledge matures.

Each application of the mapping process probably involves some combination of these
alternative process goals at varying levels of engineering decision making.

4.1 Select Features from Domain Model

The selection of features involves the analysis of the feature and operational models to
determine:

1. what features are required or desired in the software to be implemented, and

2. what functionality and entities are necessary to deliver those features.

The feature model provides the primary input for deriving the requirements for the software to
be implemented because they capture the essence of user needs and desires for the software.
As described in Section 4.3.2 of [Cohen 92], there are three distinct groups or classes of
features for the movement control domain (and, one can assume, for most domains).These
three classes of features and their effect on the software specification(s) and framework are:

1. Operation. Those features that describe the functional characteristics of the
domain; the services that a system must provide.

The operational features are essential throughout the process of creating the
object and subsystem specifications. Many of the steps in the process make
direct references to information in the feature model.

2. Context. Those features that describe the overall mission or usage patterns
of a system; the description of the class(es) of users for a system.

The context features serve two major purposes in this process:

They may drive the selection of various operational features, i.e.,
omission of alternatives or options, based upon the specific context to be
Implemented or, conversely, inclusion of multiple alternatives and options
based upon a desire to support a wide range of potential contexts.

* They will manifest themselves In variations of control flow In controlers
* and executives as derived from the control Information contained in the

operational model.

CMWI44-Th4 35

S ... ;•. . .• • ... .. -A , -, . ,, . .•. . .. . . : • I '-: . . .. . - .. , ,,-



3. Representaton. Those features that describe how information is viewed by
the user or produced for another system; what sorts of input and output
capablites are available.

The representation features will be a significant driver in the kind and
capabilities of the physical and logical devices needed to support the resulting
application, and thus the surrogates needed to interface with those devices.
Representation features can also drive the aggregation of data and their
structures as defined in the objects.

lithout knowledge of the desired features, it is not possible to determine the kinds of data
,leedd in the software or the necessary structures or constraints to be placed on that data.

The result of this step is a record (in no specific form) of the selected features. This record (list,
highlighted features diagram, or other media) is used throughout the remainder of the Domain
Design process.

4.2 Create Object Specifications

Now that a number of features have been selected for inclusion in a generic design, the next
step in developing the design is to understand how the features/capabilities are to be provided.
The service provider abstraction in the OCA is the object. Thus, analysis to locate, understand,
and specify the objects needed to implement features is the most appropriate step to perform
at this point.

42.1 Ientify Objets Obect Form
Those entities that are required for the selected features and functionality need
to be created. Look first for entities that are first and second entities above Name
primitive entities. The primitive entities usually embody data items at an Description
elemental level of representation, i.e., numeric values, string data, etc. The
entities above these leaves generally provide useful software abstractions for
the domain.

The place to look for objects to be supported is within the information model. In FODA, the
information model is created to sRpport analysis and OidetanKlnlo of the domain problems
and to deiveand a uctUr doain objecW uedin the ppMation.15 The primitive entities are
the leaf Items in the Information Model, while the object's abstractions are found at various
levels in the tree-based information hierarchy, as described in Section 2.2.

Higher-level objects may be constructed from combinations of lower-level objects. From the
movement control domain, the concept of a road map involves knowledge ot:

1. locatms -names of places, their posions In terms of some coordinate sys-
toen, and other identifyi or useful data.

* •. SfIKan gOj W1 i SK 5.z.&

L i



2. segments - connections between locations, their names, and other useful
information, in particular, their length.

3. routes - a series of segments that defines a path between two or more
locations of interest.

4. the map itself - a complete collection of the locations and segments in a
selected geographical region.

It is not necessary to provide an object for each entity in the information model. There is an
important criterion to be used to determine whether or not an entity in an information model
should be mapped onto an object. In the map description given above, the locations,
segments, and routes are easily implemented as simple information aggregates, such as
records and arrays in the Ada language. Conversely, the map concept involves the use of a
complex structure due to the need to maintain the Interrelationships between segments and
locations, i.e., the segments know about which locations they connect, but locations may be
connected to arbitrarily many locations via multiple segments. The generalized criterion can
be stated as follows:

"* If a data entity can be implemented as a simple data structure with no extra
functionality required to support the abstraction,

then leave it as an entity, noting its existence on an Entity Ust for
incorporation into a System Engineering Units or_-Types package (defined in
Sections 5.1 and 5.2, respectively), as appropriate.

Use a single Entity Ust for all of the objects to be specified via this process.

"* If the entity consists of a non-trivial relation between data items where explicit
functionality is required to maintain that relationship,

then the entity should be allocated to an explicit object. This object's internal
state will support the needed relationship via use of abstract data type (ADT)
packages in the implementation of the object.

Each simple entity has been captured on the Entity List, for later specification in a data type
package. Each entity selected to become an object will be specified using a Object
Specification Form, shown in Appendix D.2. Further specification of the object, deriving its
needed operatons, Is performed in the next step, described in the following section.

4.2.2 Derive Object Opramons and InpuOutputs Object Form

The operations on the selected objects are derived from two sources:
Requirements

1. the selected features and feature combinations in the Features

features model (from the record developed during Step 1), FeaotresS
and Excepotons

2. by determinin the transformations needed to support the

data flows specified In the operational model.

The triu nWftns and the fleudblifes required by pertinent features are syntheized Ito the
o~jecs m or akmpisms when Imnented In the selected programrrft lanua.

-4 1



The different classes of FODA features may be handled as follows:

"* All mandatory features that are immediate descendants of the selected
feature are entered on the form.

"* Alternative features that are considered applicable or desirable to be
incorporated are entered on the form. Choose at least one alternative
feature: otherwise, the parent feature cannot be correctly mapped into an
implementation. Be sure to note that the feature is an alternative.

"* Optional features that are considered applicable or desirable to be
incorporated are entered on the form, noting that the features are optional so
that the developer can make the use of that feature available for easy
addition or deletion.

It is desirable to attempt to enumerate all of the relevant features on the Object Form. One can
separate between:

"* features supported directly in the implemented object (building what you
need), or

"* features supported via multiple instances of the object with various selections
of feature availability and underlying implementations (building in every-
thing), and

"* those features not supported by the object or any version.

However, it will be very important to be able to trace the implemented object (and versions) to
a general specification of the range of capabilities desired.

The Object Specification Forms for the allocated objects are complete at this time. They are
used to specify the Object Manager and Signatures components, which are completed within
various steps of the Domain Implementation process. Figure 3-2 on page 24 shows the
migration of domain information to them OCA components. Table 4-2 on page 32 refines this
migration by detailing the usage of the various sections of the Object Specification Form.

4.3 Create the Subsystem Specifications

As discussed in Section 2.3, a subsystem is an aggregation of objects. Subsystem Form
At this point, it Is appropriate to synthesize a grouping of the objects that
will be working together to perform a given mission. These objects Name
should colate strongly to some set of features In the features model Description
which are collected under a single mid to high level feature.Depending Requrernents
on the scope of the domain, a subsystem should correspond to some Imports/Exports
fature In the eature moda l where the obcts to be agWegated support ExoepUM
the needed subeatures for the subsystem encepsulating the selected

-aar feature.

For each input or output needed or provkide by a subsyslem's objects, determine the
pp iprkit -um (for Mpofr) or desnaton (for ,xp ) aftysm using ft opwmuavori
-cdes This slap may be dsnerred wil fth pplatio Is furhw d" becae the V-N',

36 CW4SE-4-Th'

S•: -,



applicable input source may not be defined until all subsystems and surrogates have been

delineated. However, it is imperative that all required inputs be noted so that system

completness can be determined, that is that all inputs for subsystems have at least one

source from some other subsystem or surrogate.

The completed Subsystem Specification Form, shown in Appendix D.1, is produced by
performng this step. Fiure 3-2 on page 24 shows the mapping of domain information to the

OCA subsystem components at an overall level. Table 4-2 on page 32 details the data
captured within the various sections of the Subsystem Specification Form.

4.4 Create a Surrogate Specification for Each Logical/Physical
Device

This step specifies an abstract view of a logical or physical device that Surrogate Form
is to be part of an application within a domain. These devices include
text or graphics terminals with keyboards, pointing mechanisms, disk Name
drives, and communications mechanisms. The use of such devices DescriptionType
may be an integral part of the total application. For example, any e Conntions

program that interacts with a user and uses previously stored data imports/Exports
needs two surrogates: Exceptions

1. one for the user interaction device, i.e., the terminal/keyboard, and

2. another for some form of persistent data storage.

The isolation and abstraction of such devices is an important step in the creation of a
consistent framework for use by multiple applications in a domain.

There are two important kinds of information needed for the analysis to specify the abstraction
to be embodied within a surrogate:

1. the contro characteristics of the device to be abstracted. These characteris-
tics will be identified using the following terms:

a. a monitor device - a device which, upon receiving an appropriate
stimulus from an external source, causes the application to receive
control signals and/or data to which the application should respond.
Such devices are nominally thought of as input devices.

b. a conti / device - a device which, upon receiving an appropriate
stimulus from the application, causes the device to send control
signals and/or data to an external destination. Such devices are
nominally thought of as out devices.

c. a device that exhibits both of the above behaviors; a device that

perfo-m both input and output ntions.
Also, consider whether the device behaves In a synchronous or

SI~~uflnl er. •,.

-37
OMVS4Fe5

- ,'.'--..-.----



2. the dmft characteristics of the device, In terms of both:

a. the physical characteristics of the initial input or final output, in terms
of size (of the device's buffer area, If any) and layout.

b. the ogkical characteristics of the final input or initial output, i.e., its
form.

The implementation details of how the control signals and data are transformed from formats
usable within the application to the format needed by the device being abstracted, and vice
versa, are what is hidden by the packaging under the surrogate specification.

The identification of surrogates can come from several different areas in the domain model
and the products that comprise it. The representation features in the feature model can identify
the needs for operations that must be provided by user interface devices with varying degrees
of capability, text, and/or graphics. The need for persistent data, shown in the operational
model, requires a surrogate to handle data storage and retrieval operations.

The completed Surrogate Specification Form, shown in Appendix D.3, is the result of this
step.The mapping of needed information from the domain model is very similar to that for
subsystems, as described in the previous step.

.4 .

U0 cIIAssE.-4-TR-4

-.- r



5 The Domain Implementation Process

The steps in the previous section describe the Domain Design process, which derives the
specificatos for the three logical abstractions within the OCA: objects, subsystems, and
surrogates. The following section will describe the Domain Implementation process of
mapping the information in those forms onto Ada templates for the component structures in
the OCA implementation.

Step Action Product

1. Identify/Create Identify low-level units of measure or Reuse of applicable data
Engineering Units base data types from Information types across subsystem

Model and Context features and create boundaries
or select packages to handle them.

2. Create Subsystem _Types Identify data types needed for object Encapsulation of
operations visible to subsystem subsystem data types
externals and create definitions.

3. Create Object Signatures Create namespace for selecting object Encapsulation of object
operations alternatives from the operational variations
Features To Be Supported items.

4. Create Manager Create object operation profiles using Specification of Object
specification consistent naming and with needed abstraction

parameters (data/features).

5. Create Subsystem/Surrogate Export Object feature information and Specification of
Signatures create namespace to document data Subsystem entities and

entities manipulated by the sub- operational variations
system's objects.

6. Create Subsystem/Surrogate Create subsystem operation profiles Specification of
Controller specification using consistent naming and Subsystem abstraction

Signature parameters.

7. Create Subsystem/Surrogate Create support for acquiring needed Encapsulation of data
Import/Export packages inputs for operations and making out- interface functionality

puts visible to others.

8. Create Subsystem/Surrogate Create sequences of object operations Implementation of
Controller package body to achieve subsystem requirements, Subsystem internals

importing and exporting data as
needed following operational model.

9. Create Manager Implement object operations using Implementation of
implementation low-level components/ADTs, etc. Object internals

following operational model.

TabWle SI: Smnmy of toe e ITemeT. tio- Process

OML TR-4."TR S3



The Domain Implementation process of mapping specifications for the subsystems and
objects onto the OCA and its Ada code constructs consist of nine steps, shown with a
summary of their actions and products in Table 5-1. The steps in the process are given in an
order that allows the developer to complete a code unit, usually by filling out a template, and
then compile the resulting source code it into a program library. Subsequent code units
developed in this process can make use of these previous results.

The Ada language incorporates the notion of a package construct as a group of logically
related type, object, and subprogram declarations. Other languages, such as C++ or Modula-
2 have an equivalent notion and corresponding construct, such as the class or module. In
addition, these languages also provide the equivalent of the separation of concern between
specification of operations and their implementation seen in the Ada package specification
and body, as illustrated in the steps shown in Table 5-1. Modula-2 16 defines the separation in
terms of distinct definition and implementation modules. C++17 clearly defines (in a less formal
manner) the class interface (or header, placed in a .h file) and implementation (placed in a . c
file). Whenever these steps refer to the terms package specification or package body. one can
refer to use of the equivalent structures in other programming languages.

The first six steps of the Domain Implementation process involve the bottom-up construction
of code unit specifications up to the level of the subsystem controller. The last three steps are
a top-down refinement process of developing supporting package specifications and bodies,
i.e., the import and export areas, and the bodies of the package for the subsystem controller
and the object manager (implementation details discussed in the appropriate section and/or
corresponding appendix section).

Steps 3, 4, and 9 are performed for each Object Specification Form derived from the previous
process. Steps 2, 5, 6 and 8 are performed for each Subsystem or Surrogate Form. Much of
the actual work of surrogate development is deferred until the application structure is
completely defined and will be described further in Chapter 6.

These nine steps map information on specifications forms for subsystems and objects onto
various constructs within the resulting code structures. This mapping is summarized in Table
5-2 on the following page.

The description of each step in this process is given at a level above the clerical work of
completing the specific template(s). Appendix A.2 contains the details of the work to be
completed at each step concerning the use of the Ada templates. Its sections are numbered
to correspond to the equivalent step in the following sections. As in Chapter 4, each step will
be described in terms of its name, actions, inputs, and product. Each step results in a
completed OCA component as a product except for Import bodies and surrogate components
which are completed during the Application Development process described in Chapter 6.

See LWIrh 85] for furhew detls on the ModulW2 language.

7. (041 [Sftg p 91O lor further details on the C... lnguage.

40 CNIISEW44-R-8

iE

A.. . ;"d



Specification Form/Section Source Code Construct

Subsystem
Requirements Controller
Features Controller

Signatures

Objects Signatures,Types
Imports imports
Exports ,_Exports
Exceptions Signatures

Object
Requirements Manager (procedures)
Features Signatures
Imports Manager (procedure parameters)
Exports Manager (procedure parameters)
Exceptions Manager (exceptions declared within the

Manager and propagated by procedures)

Table 5-2: Mapping from Specification Forms to Code Constructs

5.1 Identify or Create Applicable System Engineering Units
Package(s)

The goal of developing a System Engineering Units (SEU) package is to gather together the
information about the basic elements of data that are commonly used as parts of many other
abstractions in software systems. The inputs are the Entity Ust, which specifies the need for
various data items, and the Information Model, which specifies the characteristics for the data.

Many of the low-level parts of data Items within typical software systems are probably
derivable from a relatively small number of data types whose usage spans many domains.
Various units of measure, such as feet or meters depending on which measurement system
the software is to support, and the operations needed to support their use, are prime
examples.

There Is no standard name for this package because it may not be prudent to put all of the
shared or common types into a single package. In the movement control example, type
declarations of this nature were built into three packages:

1. MeasurementTypes - a package of basic units of measure such as length,
weight, and speed, which are available in both metric and English units and

CMU/S-94-T-8 4

r-



scales, and which provides a flexible mechanism for using and changing be-
tween the units.

2. VehicleTypes - a package which encapsulates the highly variant structure of
the hierarchy of information that can be stored as part of the many different
views a vehicle may have within the Army command structure.

3. Default - a package which provides useful constants for various instances of
Vehicle_Types.

The identification of data types that should become part of this package or set of packages
(depending on the number and layering of data types needed) can be identified by examining
the Entity Ust, developed during the Identify Objects step in Section 4.2.1, for those data items
that are used by multiple subsystems. Developers should attempt to reuse packages that
provide the required data types wherever possible. Some good examples are the
BasicDataTypes and the many mathematical packages available from the CAMP project
(see [McNicholl 88]). Otherwise, the developers must implement them directly. [Gautier 90]
contains a suitable set of guidelines for development of Ada packages with specific rules for
generics and a strong focus on reusability.

The result of this step is the selection of reusable data type packages to be used throughout
the OCA components These packages specify many of the data types to be transferred
between the import and export packages for subsystems and surrogates and the parameters
used by object operations.

5.2 Create Subsystem Types Package

The process and inputs for creating this package are similar to that 0 (2)
just described for creating the System Engineering Units or
CommonTypes package(s). The key result is to provide a suitable
type definition for those entities that will be used with a single /
subsystem.

Allocate all of the remaining data items in the Entity List to the appropriate subsystem's
"_Types" package and create a suitable type declaration for each item, referring to the
Information Model for the needed data characteristics.

Notice that all of the data structures that will be passed between subsyvems and surrogates
have been defined In these two steps. Those data items that are used by multiple subsystems
are defined first in various SEU packages. Then, those items that are used only in one
subsystem are defined in specific Types packages. Surrogates are an exception in that they
need access to the data types of all subsystems to which they are to provide their services.
Thus, the import and export packages and the controller package body for a surrogate will
incorporate type Information from each subsystem -Types package as needed to implement
the needed operations for the surrogate.

42CLISE-9T



5.3 Create Object Signatures Package

The Signatures package at the object level of the OCA captures the use
of features that imply a siection from alternative algorithms or other Object
information used to control the execution of an operation, e.g. control [-j]
information. As an example, consider the operation of selecting a route
between two points (following the logical map structure described in

Section 4.2.1).

The movement control domain model in [Cohen 92] describes two alternative subfeatures for
the route selection feature, best and satisfice.18 Computer science has two terms that are
synonymous with these notions, optimal and heuristic. A best (or optimal) solution should
guarantee the most accurate results possible, at the cost of high (or perhaps prohibitive)
computational time. Conversely, a satisfice (or heuristic) solution may provide a result that is
less than optimal yet is satisfactory for the intended purpose, and has the property of being
solvable ,i. an appropriate time period. The selection of the best or satisfice feature has
nothing to do with the data (in this case the points selected as start and end points and any
others to be visited along the way). The feature selection has to do only with the algorithm used
to produce the desired results, i.e., control of the application. This is the intent of the use of
features in FODA, the selection of appropriate functionality according to the user's desires.

"The Object Signatures package captures the flexibility of an Object Manger's functionality. The
Signatures package creates the namespace for identifying the existence of features, keeping
separate from the code that creates and implements the operations that satisfy those features.

Building the Object Signatures packages is a straightforward process. For each named feature
from the Object Specification Form, create a corresponding name within the Object Signatures
package. If an object has no features, i.e., alternative implementation calls or optional
processing, then no Signatures package is required.

Creation of Object operations begins with the next step, as described below.

5.4 Create Object Manager Package Specification sNmN I

The intent of the Object Manager is to provide a standard mechanism for Object
invoking the operations needed to provide the services for the

physical/logical object that is to become a part of a system. Use of a
standard mechanism provides two major benefits:

1. It allows the use of a predefined set of operations/names that give objects a
consistent set of operational semantics. This enables objects that implement

15 The ward satidsiles dened as to deckde an and pumue a courn of achon ha f &ad* ow mkfrnn
ieqkem neWitssn y to ad•ew & partcular goal [OED 87]. This word and its definition are attibutab to
Nobellaureae Dr. HerbSknon, whoht mud ft I manycwmxwt, including I*idhg various clases of solutions
to comblutorla problims (fSlion 81] Chapter 5, p. 136.)

OMU• TR-4
4



even highly different abstractions to be common building blocks for multiple
applications due to the external similarities.

The development of this consistent namespace for object (and eventually
subsystem) operations involves an analysis that is beyond the scope of this
report (see Limitations in Section 3.5).

2. It results in a great increase in the understandability and maintainability of the
subsystem operations that utilize the object's (via the manager) operations in
their implementations.

The need for parameters for the operations is defined by the lists of Imports and Exports in the
Specification Form for the object. Using the Operational Model to provide the precise needs
for inputs and outputs for each operation, fill in the parameter profiles for each operation
specified in the code template. If an object handles multiple entities, then each predefined
subprogram will be overloaded to handle each of the entities to be stored and/or manipulated
by the Object via Manager calls. Also, for each type of object feature, add a parameter of mode
'in', using a default parameter value if a particular feature is nominally used at invocation.

Using the information on the Object Specification Form, verify that each mandatory feature is
allocated to one (or more) subprograms and that specified optional or alternative features are
similarly supported via use of feature parameters in the appropriate subprograms. Finally,
ensure that there exists a version of the applicable subprograms for each entity allocated to
the Object Manager.

5.5 Create Subsystem/Surrogate Signatures Package
As discussed previously in Section 5.3, the Signatures package is a
mechanism for creating a namespace to be used by the executive
to achieve precise control of the subsystem. The executive [ 0 0
achieves this control via the passing of control-related information I u

from the executive to subsystems and their underlying objects c__tiolw
during procedure invocation. The process to be followed for
creating a Signatures package is similar to that described earlier for
Objects. The features named on the Subsystem Form are mapped
onto operation names or to features names to be passed down to
inwoke alternative or optional sets of Object operations.

For the Subsystem Signatures, there is the additional responsibility of incorporating any
Object Signatures packages and their information into the Subsystem package and
reexporting19 them for use in the executive. Reexporting makes the various type names and
enumeration literals from the associated Object Signatures packages directly visible at the
subsystem level. The effect of reexporting the types and literals from the Object Signature
packages is to minimize the need for other subsystems and surrogates or the executive to

1'. See [Bardin 87a] and [BaRdin 87b] for an explanation of the concept of reexporting and for an extended
example of its application, respectively.

44 CMU/SEI-94-TR-8



require visibility to the Object Signatures, i.e., using the with (as in Ada) or include (as in C++)
syntax to reference the signature information. Reexporting simplifies the usage of the
subsystem by centralizing all of the Signatures information into a single entity, the Subsystem
Signatures package.

A User Interface (UI) Surrogate Signatures package provides a good example of the use of
signatures in the OCA. The UI is a focal point for control information in that the user's input in
terms of menu selections, button clicks, etc., must be transferred in a form usable by the ap-
plication's executive. Similarly, errors that the user must be informed of need to be trans-
formed into device-usable formats. Thus, the UI Surrogate Signatures is a complex structure
that, in many cases, requires a great deal of knowledge about the application as a whole. Its
Status_Value is a variant record structure that contains the equivalent of the selected menu
option, keystroke, etc., that are to be processed by the application as a user command. All
subsystems whose operations are invoked by the user via the UI surrogate must become part
of the surrogate's namespace. Also, the information needed to construct appropriate error
messages must be in the Signatures package.

A surrogate depends upon information from subsystems it is to support; therefore, it will not
be possible to completely define a surrogate until all of the subsystems that will become part
of an application are selected and defined, e.g., a complete surrogate is bound to a specific
instance (at the subsystem composition level) of an application architecture. Consequently,
the addition or removal of a subsystem to an application will (in all probability) affect one or
more of the application surrogates. This does not mean that a surrogate is application-specific;
just that there is some degree of coupling between subsystems and the surrogates. This
coupling is well defined and is described in Section 6.2 where the surrogates are completed.

5.6 Create Subsystem/Surrogate Controller Package Specification

The Subsystem Controller provides a uniform interface to the
underlying capabilities of the subsystem. Again, the use of a

predefined namespace for the subsystem provides for consistent 0 [Q
names across subsystems, just as for objects as discussed in
Section 5.4. The procedures declared in the Controllers use the
entities declared in the Signatures package as parameters. The
parameters will be used in the Controller body to determine which
Object operation(s) need to be invoked to fulfill the required
functionality.

For surrogates, the process is essentially equivalent to that for subsystems. Again, some
amount of work must be deferred until the application is defined, since each of the two device
control procedures, Application_To_Device (for control surrogates) and
DeviceTojApplication (for monitor surrogates), is overloaded for each functional subsystem
that is part of the application architecture. Also, because for some subsystem operations we
need to distinguish between differng kinds of information relating to the same entity, we may

CMU .EI-94-8R.8 45

- - -- - - - - --e-



need to use an alternative form of the DeviceToApplication procedure. This second

overloaded form allows an incomplete yet useful amount of entity-related information to be

transferred into the application versus a complete data item. This alternative is useful in

passing search key information into the application for use by a subsystem in searching for

and locating a desired piece of information in a large information aggregate so that a complete

record can be returned, hence the use of the term Key in the Data_Kind declaration seen in

the template In Appendix E.3.

5.7 Create Subsystem/Surrogate Import and Export Packages

As discussed in Sections 2.3.2.3 and 2.3.2.4, the Import and Export
packages provide the mechanism for bringing data into and getting C J
it out of the subsystem or surrogate; there is no difference in their
implementation, other than when in this process they can be

completed. The subsystems can essentially be completed at this cotroner

point, whereas the completion of the surrogates must be deferred
until the application context is further defined.

The Export package is completed first. The need for a data item to be exported is defined by
the Export and Destination information in the Subsystem or Surrogate form The Export

package creates a visible reference to data values of use to other parts of the application. The

content of the declared data items is determined via calls to subsystem/surrogate operations.

There are two basic methods for exporting data within the OCA:

1. One can simply supply declared variables which are directly visible within the
package.

2. One can supply functions that return an applicable value. The functions hide
any visibility to the variables themselves and can be used to implement
indirect and/or mutually exclusive access to the data.

The Import package is completed in two parts. The specification or declaration part creates

the function name (one for each data type listed in the Imports section of the Subsystem
Form). The function will be invoked by the Controller to gain access to the data value specified

by the return type (one for each data type required by one or more subsystem operations. The

body supplies a reference to a data value of the required type), either directly by naming a

variable created in another subsystem's Export package, or indirectly by calling the function

supplied by the Export package. In either case, the knowledge of where a data item comes
from is hidden at a level where it is easily modified and has minimal effect to the remainder of

the application code. The body part is completed in Section 6.2.4 for subsystems. For

surrogates, completion of the import and export packages is deferred until Section 6.2.3.

46 CMUwSE-04-TR-8



5.8 Create Subsystem/Surrogate Controller Package Body

The Subsystem Controller body is where the binding occurs
between the objects that provide the services and the needed
imports and exports needed to make the services perform work.[J[I ] 7
Thus, the recurinng theme in implementing a Controller body will be
centered about the following sequence: Cnrlr

1. Take in the entity (and feature(s)) parameters eventually to
be passed in by the call from the Executive, defined in the
operational and feature models, respectively.

2. Based upon the given parameters, select the appropriate Object operation to
call.

3. Call the selected operation, using appropriate Import functions to satisfy the
input parameters and Export variables to receive output results.

4. If no exception is raised, ensure the state of the subsystem is indicated as
Normal, or handle any propagated exception by either issuing other Object
calls to clean up the Object state or setting the Intemal_State to a meaningful
Status-Type for examination and action by the Executive when the Signal
function is called.

The steps for completing a Surrogate Controller body are less clear due to the differing nature
of what a surrogate is to accomplish in terms of the multiple of different capabilities ,.)resented
by various devices. Thus, these steps are much less precise than those given in other sections
of this report, but they will still provide some guidance to the implementer of the surrogate.

1. Plan to develop a surrogate in either one of two ways:

a. One style is to encapsulate the device characteristics into a single
Handler package using the information on device characteristics and
buffer size given on the Surrogate Specification Form and develop a
Transforms package for each subsystem and its data entities to be
handled by the device. This approach is recommended for devices
that have a single set of fairly immutable characteristics where those
characteristics are best located in a central location. This approach
was used in the User Interface Surrogate (see Section F.1.1 for a
discussion of data interfaces used in the user interface).

b. An alternate approach, suitable for disk systems whose file formats
are highly flexible, is to develop a Handler and Transforms
combination package for each subsystem. This approach
acknowledges the fact that there is a single logical device (with
potentially asynchronous behavior) that should be encapsulated in a
controller, but the flexibility of the device precludes the need for a
single Handler package, i.e., each file type or set of related files to be
used is implemented as a separate package.

n/ 94-TR-4

Mia



2. The namespace for device Handler and Transforms package is less rigid than
the namespace used for subsystem controllers and object manager
operations. It is important to develop a consistent namespace for use within
a single surrogate, but the names need not be consistent across different
surrogates. For example, the notion of Read, Write, Open and Close
operations are highly useful when thinking about file systems, whereas Get
and Put or Send and Receive operations are more applicable to other kinds
of devices.

Also, since the surrogate will need knowledge of the specific application to be complete, the
remaining portion of the surrogate development must be deferred until a specific application
(in terms of subsystems/features) is to be developed.

5.9 Create Object Manager Package Body

The Object Manager body is where the binding occurs between the
specific algorithms and/or abstract data types (ADTs) to be used to Object
implement operations and the data types and constructs of the OCA. -

Therefore, the bulk of the completion of its internals is left to the
implementer using any design approach or method that produces
components that will integrate into the OCA subject to the limitations
described in Section 3.5.

From this point on, the package implementer has to 'with' in any additional packages
containing the algorithms and ADT operations desired to complete the construction of the
operation subprograms in accordance with the requirements/features allocated to the object.
This includes appropriate performance or system features such as constrained memory
usage.

A subsystem controller is designed to be the top level of a hierarchy of code units supporting
the application executive. Each level in the hierarchy provides specific resources or
encapsulating lower level resources. Figure 5-1 illustrates the implementation of this hierarchy
with an example, again drawn from the movement control domain.

The Subsystem Implementation Model depicts the contents of the Object Manager and the
relationships between the components that form its contents and to the subsystem controlling
the object. The bottom two layers of the hierarchy, Basic Operations and Data Types, provide
ADT services (usually in the form of Ada generics) and type-specific declarations and services,
respectively, to the next two layers, Utilities and Objects. The Utilities layers provide an area
where generic objects can be formulated and those generics instantiated as needed prior to
use within an Object Manager at the Objects level. The Object layer is where the use of Utilities
and Data Types are combined into meaningful abstractions for use by the Subsystem.

48..M'"- " -94:,-4

717



Subsystem Convoy Builder

Convoy
Objects Manager

OCA r' t t*'-I

OOD Instantiat•d CoUvovy

UdlUtilities

UConvoy Find. AddLengthSConstraints JAdLn~

Data Types onvoy Mae Meument e

Operations Set Pckagesge R

Figure 5-1: Subsystem Implementation Model

The structure of objects is less regular than that of subsystems or surrogates as defined by
the OCA. The Subsystem Implementation Model shown here describes the kind of
relationships and dependencies that can exist at the Object level. The Utilities, Data Types,
and Basic Operations layers are an attempt to capture these relationship in an object-oriented
mi ler. Again, the purpose of an object is to model an important entity in an application. It is
not possible to rigorously define the implementation of an object because of the wide variance
in what objects are needed in domains and how they are characterized in software. The
Subsystem Implementation Model of the OCA provides guidance on the kinds of software
components that can be used to implement domain objects in software.

CMu18in44-TR-8 40

I - -- . -- ~4-c



Ott souTI -~ C */*jW C "



6 Application Development Using a Generic Design

The previous two chapters described processes for taking information from the domain model
and transforming it into design and code units (at varying degrees of completeness) that are
to become the bul-ding blocks for the development of actual applications in the domain. The
following sections describe the Application Development process, which completes any
unfinished blocks and assembles them into a cohesive application. This process consists of
three major steps, shown, along with a summary of their actions and products, in Table 6-1.

Step Action Product

1. Create Application Determine needed subsystems and Context for Application
Signatures surrogates. Document operation

namespace. Determine executive
statespace.

2. Complete

1. Surrogate Signatures Determine data items to be handled. Namespace to describe
Determine control feedback needs device capabilities
to executive Determine error
handling information needs.

2. Surrogate Controller Create surrogate operation profiles Specification of
specification using given names and data item Surrogate abstraction

namespace.

3. Surrogate Import/Export Use operational model to determine Encapsulation of data
required external inputs/outputs, interface functionality

4. Subsystem Import body Complete mapping of sources for Isolation of data source
required inputs. lo, Aion

5. Surrogate Controller body Create sequence of transforms for Implementation of
handler operations. Surrogate internals

3. Complete Executive Determine overall flow of control Top-Level Control of

Template via operational modeL Application

Table 6-1: Sumunwy of the Applicaton Development Process

As described in the introductory material to Chapter 5, whenever these steps refer to the terms
package specification or package body, one can refer to use of the equivalent structures in
other pmrgmmig languages.

6.1 Create an Application Signatures Package
The Appmt SinatM package i the top-level namespace for the application to be buit
This namuepece Is most essential to the executive, but as discussd earlier, is needed by

CWU#8UEW4.The

* - t

a.Q .. ,t



various package bodies to complete their in-.,Aementation. This package is where the various
subsystems and surrogates are identified together as an Application Aggregate. Also, other
important declarations useful to the executive and various surrogates, in particular the UI
surrogate (If needed), are made here.

Three different kinds of declarations are made in this package:

1. naming of the subsystems and surrogates that constitute the application,

2. naming the subsystem/object callable operations,

3. naming the statespace for the application,

6.2 Complete Packages Making Use of Application Signatures

Now that the application is defined, via the namespace and the underlying references to the
needed subsystems, the parts of subsystems and surrogates that were deferred from the
processes and steps listed in Chapter 3 can now be completed. The completion of these
packages is done in the paragraphs below, performed in the given order.

6.2.1 Complete Surrogate Signatures Package rn
Now that the subsystems to be used are selected, the surrogates that Lt
provide the interfaces for data to be processed by the subsystems can
be completely defined.

The entity namespace is the list of identifiers for those data types •!t7
handled by the surrogate. Simply create an appropriate enumeration
literal for each data type to be used.

For most surrogates, the StatusValue enumeration type was previously defined by the error
information returned by the device. For the UI surrogate, the Status_Value is the list of valid
operations whose implementation requires the services of one or more subsystems. For each
subsystem with features, create a variant record whose discrminant is based upon the
subsystem's EntityType, and then, for entities whose use is associated with a feature, create
a variant part with a field to hold the identifier for the selected feature type. The StatusType
is then completed using the format given in the Surrogate Signatures Code template. Also, for
UI surrogates, the ErrorRetum_Type template is completed, filling in a variant part arm for
each subsystem to include its Error_Type information.

6.2.2 Complete Surrogate Controller Packig. Specfica•iion
Completionof the Suwogate Controler code template (speaificatlon),
started in Section 5.6, can now begin. Depending on whether or not a
single Entity-Type was created In the surrogate's Signatures I 1
package or the use of the subsystem Signatures packages is | i
required, the number of required subprograms can vary significantly.

52

-77~' AW



The two subprograms, Device_To_Application (for allowing the device to make inputs visible
to the application by placing value into the Export region) and ApplicationTo_Device (for
sending control information and data) are overloaded once for each Entity_Type from the
surrogate or subsystem Signatures, as appropriate. Again, depending upon whether or not
keys are required (as described in Section 5.6), use of the Device_To_Application subprogram
template with the additional Kind parameter may be desired.

6.2.3 Complete Surrogate Import/Export Packages
This process is equivalent to that given in Section 5.7 for completing
the subsystem Import/Export packages. /c•/

6.2.4 Complete Subsystem Import Package Body

With the completion of the Application Signatures package, the
Import package body can be completed for those function bodies i
that required the use of the Source parameter, as described in
Section 5.7. Additionally, data values coupled to external inputs via c ]
the surrogate Export packages can also be defined. -

6.2.5 Compete Surrogate Controller Package Body 0

Completing the Surrogate Controller body is simply a matter of I_ I_ g
following through with the style of Controller selected in Section 5.8.
The use of outside generic packages for creating the Transform Controller
package(s) to be the service providers for the surrogate controller is
on an as-needed user-defined basis.

6.3 Complete the Executive Template

Finally, the construction of the application executive can begin. A code template should be
used to assist in the implementation of the executive, such as seen in Appendix E. 15. Within
the executive, there are at least three major runtime phases, illustrated by the
ApplicationState type in the ApplicationrSignatures package. The initialization phase brings
the application up to a point where it can receive inputs and produce results under the
specified circumstances. Any operations needed to initialize the application must be called
before the Program-State is set to Steady.

Within the main program loop, the UI Signal function acts as the driver for the application, i.e.,
the user selects operations to be performed and the application responds to those selections.
The selections are returned in the form of the StatusType record from the UI surrogate which
has embedded In It

CMU15-4-TR-8 53I5



"* the identity of the subsystem of primary concern,
"* the operation (translated into one of the standard operation names), and

"* any entity and/or feature information needed to control the subsystems and
underlying objects to be invoked by the executive as a result of the selection.

The selection may invoke a sequence of operations involving multiple subsystems or
surrogates.

The executive main loop is organized internally as a set of nested Ada case statements. By
using the pieces of the selection record in a consistent way, the executive can, in turn, be
organized in a consistent way using the following scheme:

1. The first level of decomposition is at the subsystem level. Even though multi-
pie subsystems play a role in most user operations, each user operation is rel-
egated to a subsystem or surrogate which has primary responsibility, usually
because it is the main service provider or the destination of the ultimate result.

2. The second level is the operation name, e.g. Construct, Destruct, and Fetch.

3. The third level is the entity name/identifier. This designates the type of data
to be received, manipulated, and or returned.

4. The lowest level is the feature identifier. As described in Section 5.3, this
value, if provided, designates a certain class of processing to be used in
obtaining the desired result.

Thus, completing the main body of the executive control loop is a process of filling out the case
statement template for each subsystem, operation, entity, and feature selection, as
appropriate, and using the Operational model and other information to determine the
appropriate sequence of subsystem operations for each user selection.

Finally, as in initialization, the executive can call a series of finalization operations on
subsystems to ensure adequate storage of important results. The finalization section is
reached only after some operation has changed the ProgramState of the executive to the
Finalize value. After completion of the finalization operation, the program terminates normally.

S4 CMUJ/SEI-94-TR-84.

I i2



7 Conclusions and Future Directions

7.1 Conclusions

The mapping process described in this report provides a mechanism for using the information
in the various models derived from exercising the FODA method on a domain. The process
provides for development of the specification and implementation for software to be reused in
a family of programs within that domain. The process is practical and provides precise
guidance where applicable, yet is flexible enough to be used across a wide variety of
application domains.

FODA Modeling

Domain Concepts

Inf°'. FODA Domain Architecture

Model

Domain Mapping Generic Design
Analysts Process

System Application aSpecfiction Developmen
ApplicationEngineers

Figure 7-1: A Development Life Cycle UUlzing the Mapping Process

Figure 7-1 formalizes the roadmap depicted in Figure 1-1 at the beginning of this report and
illustrates the use of the mapping process as an integral part of a development lifecycle where
domain analysis provides the models needed to characterize the requirements for a related
set of applications and the mapping process exploits the models to develop a generic design
which is then reused for each product in the program family.

The authors completed, with the assistance of a graduate student who wrote the GUI, a
demonstration prototype consisting of 22,000 lines of Ada code and 2,500 lines of T". This
prototype demonstrates the viability of the mapping process. Only a general notion of the
desired capabilities were selected as features from the features model. The remaining data
and detailed functional requirements were gathered following this process. The resulting

CMU/SB-O4-TR-8 55

r ~"-- ~.~.- - t '



software contains four subsystems, four objects, two surrogates, two handlers, four
transforms, and an executive. Of the 22,000 lines of Ada, approximately 6,500 lines were
reuses of various Booch components, described in [Booch 87]. The example movement
control software described throughout this report has been compiled and executed on multiple
hardware/OS/compiler combinations.

7.2 Future Directions

7.2.1 Near-Term
1. Further validate the model(s) and templates by documenting their usage by

outside users on their domain analysis or reusable software efforts. In partic-
ular, work with an organization in a domain with real-time and other perfor-
mance related requirements to test the process's ability to incorporate and
suitably handle such requirements.

2. For the example system, further prove the flexibility of the OCA by:

a. replacing the rudimentary map abstraction with calls to a more
comprehensive Geographical Information System (GIS),

b. reimplementing the "C"-based GUI in Ada, using appropriate Ada
bindings to X and Motif and removing the type conversion routines
and substituting a more flexible buffer interface for the data items to
be exchanged between the GUI and the rest of the application, and

c. reimplementing the I/O packages under the DataBase surrogate to
incorporate the use of a commercially available relational database
using SQL syntax.

3. Extend the executive model from its present form with a single thread of
control to incorporate the ability to handle multiple threads of control, thus
providing the ability to handle multiple asynchronous devices.

7.2.2 Long-Term
1. Investigate mechanisms that will make possib"i the development of more

highly reusable objects, including further studies involving the use of generics
and the forthcoming changestfeatures of the new Ada standard, Ada9X.

2. Investigate the potential for automation of the process of template generation
and completion through use of appropriate software tools. If this is successful,
continue to explore the automation process towards the goals of complete
generation of applications via selection of features and information entities
desired.

3. Further investigate the processes described in this document through case
studies. From analysis of such studies, refine the processes to strengthen
their utility and understand their application in other domains.

4. Implement the OCA executive as a set of subsystems and surrogates that
provide access to the following services:

5CMUgoSa-w-gh"-.



a. Event management, including time.

b. Schedule management.

c. Import/Export management, to allow for the dynamic binding of
connections between the Import and Export packages.

d. Control sequencing (subsystem activation), based upon schedule
constraints and subsystem location.

e. Registrar, responsible for the initialization, finalization, and location of
subsystems and surrogates on an ongoing basis.

Such an implementation would make possible fully distributable versions of
applications using the OCA, thus achieving the degree of flexibility needed in
the design and implementation of software systems in the future.

The mapping process should be a useful addition to the development process of any
organization looking to reap the benefits of domain analysis and the systematic exploitation of
software architectures. The generic design and supporting components developed from use
of a domain model and a selected architecture will greatly increase the reuse potential and
maintainability of application instances within a domain due to the common parentage of their
underlying software. Such increases translate into decreased long-term costs, an important
part in creating a competitive advantage needed to survive in today's global software
marketplace.

CMU/SEI-94-TR-8 57

77~
-s.- 7,



58 CMU/SEI-94-TR-8



References
[Abowd 93] Abowd, Gregory J.; Bass, Len; Howard, Larry; & Northrup, Linda.

Structural Modeling: An Application Framework and Development Process
for Right Simulators (CMU/SEI-93-TR-14, ADA271348). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, August 1993.

[Ada 83] Ada Joint Program Office, United States Department of Defense.
Reference Manual for the Ada Programming Language (ANSIIMIL-STD-
1815A). Washington, DC: GPO, 1983.

[AHD 85] The American Heritage Dictionary, 2nd College Edition. William Morris, ed.
Boston, MA: Houghton Mifflin Co., 1985.

[Bardin 87a] Bardin, Bryce M. & Thompson, Christopher J. "Composable Ada Software
Components and the Re-Export Paradigm." ACM SIGAda Ada Letters, Vol.
8, 1 (Jan. 1988): 58-79.

(Bardin 87b] Bardin, Bryce M. & Thompson, Christopher J. "Using the Re-Export
Paradigm to Build Composable Ada Software Components." ACM SIGAda
Ada Letters, Vol. 8, 2 (March 1988): 39-54.

[Booch 87] Booch, Grady. Software Components with Ada: Structures, Tools, and
Subsystems. Menlo Park, CA: Benjamin Cummings, 1987.

[Booch 93] Booch, Grady. Object-Oriented Analysis and Design with Applications.
Menlo Park, CA: Benjamin Cummings, 1993.

[Cohen 92] Cohen, Sholom G.; Stanley, Jay L., Jr.; Peterson, A. Spencer; & Krut,
Robert W., Jr. Application of Feature-Oriented Domain Analysis to the Army
Movement Control Domain (CMU/SEI-91 -TR-28, ADA256590). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, June 1992.

[Feiler 93] Feiler, Peter H. Rengineering: An Engineering Problem (CMU/SEI-93-SR-
5). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, May 1993.

[Fernandez 93] Fernandez, Jose L. A Taxonomy of Coordination Mechanisms Used in
Real-Time Software Based on Domain Analysis (CMU/SEI-93-TR-34).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
Dec. 1993.

[Gautier 90] Gautier, Robert J. & Wallis, Peter J. L, eds. Software Reuse with Ada.
London, England: Peter Peregrinus Ltd., 1990.

[Gelemter 92] Gelernter, David & Carriero, Nicholas. "Coordination Languages and Their
Significance. Communications of the ACM, Vol. 55, 2 (Feb. 1992): 97-107.

CMU/SEJ-94-TR-8 59

17-



[Hefley 92] Hetley, William E.; Foreman, John T.; Engle, Chares B. Jr.; &

Goodenough, John. B. Ada Adoption Handbook.* A Program Manager's

Guide, 2nd ed. (CMU/SEI-92-TR-29, ADA258937). Pittsburgh, PA:
Software Engineering Institute, Caregie Mellon University, Oct. 1992.

(Kang 90] Kang, Kyo C.; Cohen, Sholom G.; Hess, James A.; Novak. William E.; &
Peterson, A. Spencer. Feature-Oriented Domain Analysis (FODA)
Feasibility Study (CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, Nov. 1990.

[Krut 93] Krut, Robert W., Jr. Integt..., i. u i Tool Support into the Feature-Oriented
Domain Analysis Methodology (CMUISEI-93-TR-1 1). Pittsburgh, PA:
Software Engineering Institute, Camegie Mellon University, July 1993.

[Lee 88] Lee, Kenneth J.; Rissman, Michael J.; D'lppolito, Richard; Plinta, Charles;
& Van Scoy, Roger. An OOD Paradigm for Flight Simulators, 2nd ed.
(CMU/SEI-88-TR-30, ADA204849). Pittsburgh, PA: Software Engineering
Institute, Camegie Mellon University, Sept. 1988.

[Marca 88] Marca, David A. & McGowan, Clement L. SADT. Structured Analysis and
Design Technique. New York, NY: McGraw- Hill, 1988.

[McNicholl 88] McNicholl, Dennis G.; Cohen, Sholom G.; Palmer, Constance; et. al.
Common Ada Missile Packages - Phase 2 (CAMP-2), Volume I. CAMP
Parts and Parts Composition System. (AFATL-TR-88-62). Eglin AFB, FL:
Air Force Armament Laboratory, Nov. 1988. Note: Distribution limited to
DoD and DoD contractors only.

[OED 87] The Oxford English Dictionary, Compact Ed. R. W. Burchfield, ed. Vol. 3.
Oxford, England: Clarendon Press, 1987.

[Pamas 76] Pamas, David L 'On the Design and Development of Program Families.*
IEEE Transactions on Software Engineering, Vol. TSE2, 1 (Jan. 1976): 1-9.

[Prieto-Diaz 91] Prieto-Diaz, Rueben & Arango, Guillermo, eds. Domain Analysis and
Software Systems Modeling. Los Alamitos, CA: IEEE Computer Society
Press, 1991.

[Shaw 90] Shaw, Mary. 'Toward Higher-Level Abstraction for Software Systems.'
Data and Knowledge Engineering 5, p. 119-128. New York, NY: North
Holland, 1990.

[Simon 81] Simon, Herbert A: The Sciences of the Artifical, 2nd ed. Cambridge, MA:
MIT Press, 1981.

60 CoMU/SEI-4-TIR8-

-<1[. - - - - - - -



[Srinivas 91] Sdnivas, Yellamraju V. "Algebraic Specifications for Domains." Domain
Analysis and Software Systems Modeling, p. 90-124. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

[Stroustrup 91] Stroustrup, Bjame. The C++ Programming Language, 2nd ed. Reading,
MA: Addison-Wesley, 1991.

[USAF 93] United States Air Force, Aviation Systems Command. An Introduction to
Software Models (USAF ASC-TR-93-5008). Dayton, OH: Wright Patterson
AFB, 1993.

[USArmy 90] United States Army. Field Manual FM 55-10: Movement Control in a
Theater of Operations. Washington, DC: Headquarters, Department of the
Army, Nov. 1990.

[Wirth 85] Wirth, Nicklaus. Programming in Modula-2, 3rd, corrected ed. New York,
NY: Springer-Verlag, 1985.

[Withey 94] Withey, James V. Implementing Model-Based Software Engineering in
Your Organization: An Approach to Domain Engineering (CMU/SEI-94-TR-
1). Pittsburgh, PA: Software Engineering Institute, April 1994.

[Zaremski 93] Zaremski, Amy M. & Wing, Jeanette M. Signature Matching: A Key to
Reuse (CMU-CS-93-151). Pittsburgh, PA: School of Computer Science,
Carnegie Mellon University, May 1993.

[001 SRM] The 00 1 TM Tool Suite. System Reference Manual, Ver. 3. Cambridge, MA:
Hamilton Technologies, Inc., Jan. 1992.

CMu/SEI--TR-8 61



62 CMU/SEI.94-T"-



Appendix A The Domain Design Process
This appendix contains the detailed descriptions for the process described in Chapter 4 of this
report. The details involve the specifics of completing the applicable forms as found in Appen-

dix D using the designated domain model information.

A.1 Select Features from Domain Model

No form data is completed at this point.

A.2 Create Object Specifications

A.2.1 Identify Objects
Using the Object Specification Form (shown in Appendix D.2), begin the documentation of the

object entity by giving it an appropriate Object Name and a short Description of the entity to

be refined in later steps.

A.2.2 Derive Object Operations and Input/Outputs

Document the operations derived from operational features directly into the Features to be
Supported section of the Object Specification form and those operations needed to supported
data flows in the Operational Model in the Overview of Requirements section of the same form.
For the inputs and outputs for each operation as noted in the Operational Model, enter the
information about them into the Inputs or Outputs section of the Object Specification form as
appropriate. Finally, any special or error condit'ons that are needed to describe the status of
an object before or after an operation is performed are noted in the Exceptions/Malfunctions
section for appropriate consideration during further refinement and implementation.

A.3 Create Subsystem Specifications

Begin filling out a Subsystem Specification Form (shown in Appendix DA) by entering the

Subsystem Name. The information for the Description section can be taken directly from the
textual information in the features catalog and the Overview of Requirements can be also be
taken from the features catalog as well as specific wording from a requirements document. Ust
the objects to be aggregated by the Subsystem under the Objects section by entering those
objects which are subfeatures of the parent feature which is being allocated as a subsystem.
For each object, copy in the required inputs and outputs from the Object Specification Form.

A.4 Create Surrogate Specifications for Logical or Physical
Devices

Fill out a Surrogate Specification Form (shown in Appendix D.3). First, provide a name in the
Sunrogate Name field and a Description. Then, enter the Type information by selection of the
control characteristics as described as above. The r -'iecction to L/O device information is
necessary to give the software developer the req•w ients to what kind of device the

CMU/SB-94-T4 63

r1*



surrogate is providing an abstaction for. For most devices, it will be important to indicate the
dewe name, which can be a logical device like Xl I or Motif for graphical displays or a
database product Ike Ingres or Informix for data storage, or a physical devices, like a SCSI
controller. For some devices, it will also be necessary to note the device's buffer capabikt in
the size of data buffer area. The device-specific information may be deferred until later in the
surrogate's development. Finally, the Imports and Exports information is entered, as
appropriate, in terms of the Name, Type, and Source or Destination and the
Exceptibaf unction information entered, in terms of Name and Effect.

64 CMtMSEI-94-TR-8



Appendix B The Domain Implementation Process
This appendix contains the detailed descriptions for the process described in Chapter 5 of this
report. The details involve the specifics of using the information on the specification forms to
fill out code templates as found in Appendix E.

B.1 Identify or Create Applicable System Engineering Units
Package(s)

No specific instructions are required at this point.

B.2 Create Subsystem Types Package

The starting point is an Ada Types package specification template, seen in Appendix E.2.
The template provides a standard placeholder for the <subsys temname> to be supplied by
the user. The given <subsystem-name> will be used consistently throughout the
succeeding steps that reference the subsystem-level implementation components. Create the
necessary type definitions, using the type information given on the Subsystem Specification
Form and its references to applicable parts of the information model.

B.3 Create Object Signatures Package

The Signatures package may not be needed at the object level if there are no appropriate
features to be dealt with. If such features exist, in particular alternative features, use the Object
Manager Signatures template as shown in Appendix E.5. Transfer the Object Name given on
the Object Specification Form (completed as described previously in Sections 4.2.1 and 4.2.2)
onto the template, replacing the <object-name> placeholder. For each group of
independent features, map the features onto specific names in the enumeration list and give
the enumeration type itself a name to replace the <feature_group> placeholder.

B.4 Create Object Manager Package Specification

The Object Managercode template (specification), shown in Appendix E.6, is the starting point
for this step. First, fil in the context clause section by writing with statements for the packages
that declare the types needed to complete the parameter profiles for the subprogram
templates. Again, transfer the Object Name from the Specification Form onto the template,
replacing the <object-name> placeholder.

For each class of error or malfunction listed in the Exceptions/Malfunctions section of the
Object Specification Form (or any otherwise erroneous conditions that potentially may
propagate out of the subprograms and into a controller body), declare an Ada exception to be
raised at applicable points within the object body code and to be handled by name with the
controller body. Remember to document the possible users of the exception in the Raised By
comment immediately after the exception declaration statement.

c•MU/SEI-94.T1-. 65



As a last check, review the Ovewviw of Requiremens and Features to be Stppoied sections
of the Object Specification Form and verify that the given subprograms in the completed
Object Manager specification support all of the required operational needs allocated to the
objects.

8.5 Create Subsystem/Surrogate Signatures Package

B.5.1 Subsystem Signatures

Start with the Subsystem Signatures code template as shown in Appendix E. 1. For each object
that is to become part of the subsystem with a Signatures package, create the with statement
to gain visibility to the package and its contents. As with the construction of the Object
Signatures package, transfer the Subsystem Name from the Subsystem Specification Form
onto the template, replacing the <subsystemname> placeholder. The first major step in
completing the Subsystem Signatures is to fill out the Entity-Type declaration by entering all
of the applicable objects and the entities supported by them into the enumeration list. As
discussed in Section 4.2.1, entities arw all of those data items that must be manipulaied by the
application, regardless of whether or not they are allocated as actual objects in the resulting
subsystems. It is the combination of these entity names and the operation names that will
allow the subsystem to select the appropriate object operation.

The next step is the process of reexporting the information contained in the utilized Object
Signatures packages, if any. This is a two part process:

1. Declare an Ada subtype using a feature enumeration type as the base type.

For example,

subtype Route_Features is Router.FeaturesType;

2. For each enumeration literal declared in the enumeration base type, declare
a function that returns a value of the subtype which renames the enumeration
literal. For example,
function Best return Router.FeaturesTypes

renames Router.Best;

Lastly, incorporate the information found in the Exceptions/Maifunctions section of the
Subsystem Specification Form by completing the Status-Type declaration. For each item
listed, create a corresponding enumeration literal in the enumeration type. Two of the
predefined names in the enumeration list, Initialized and Normal (the first and last
literals in the list), are important to the implementation templates and should not be removed
or renamed. Note that the handling of the Exceptions/Malfunctions items differs from how they
were used in development of the Object Signatures and Handler specifications. The reasons
for the differences in placement, implementation, and ultimate usage will be discussed in a
subsequent report describing the OCA implementation in greater detail.

6 CASEI-94-TR-



8.5.2 Surrogate Signatures
For surrogates, the process is similar, but with a couple of important modifications. The
Surrogate Signatures code template is shown in Appendix E. 11. The first important difference
of note is that there are two distinct forms of surrogate, one for user interface (Ul) devices and
another for devices not associated with Uls. The information content vares greatly between
the two forms. The nominal device surrogate Signatures package contains two enumeration
types:

1. One lists the entities (data items) that are to be processed by the surrogate

for input and output as appropriate to or from the functional subsystems.

2. The other lists the errors that the device is capable of generating.

Ultimate completion of the surrogate Signature packages (and the Controller specification and
body) must be deferred until the application is defined. However, we can begin the process.
In particular, the basic structure can be selected by removal of inappropriate template items
and entry of the package name can be done by replacing the <devicename> placeholder
with the Surrogate Name from the Surrogate Specification Form. Further work is deferred until
the process described in Section 6.2.1 begins.

B.6 Create Subsystem/Surrogate Controller Package
Specification

The Subsystem Controller code template (specification) is shown in Appendix E.3. This is an
extremely simple template to complete, as there is only one unique placeholder, that for the
<subsystem.name>, that must be replaced with the actual Subsystem name from the Spec-
ification Form, one for each occurrence of the placeholder in the template.

The Surrogate Controllercode template (specification) is shown in Appendix E.12. Just as was
done in the previous section we can begin the completion of the Controller Code template by
replacing the <devicename> placeholders with the Name given on the Surrogate Specifica-
tion Form.

B.7 Create Subsystem/Surrogate Import and Export
Packages

The Export package code template is shown in Appendix E.8. The first step is to replace the
occurrences of the <subsystemLname> placeholder with the appropriate Subsystem Name.
Remove any unneeded with statements or add any additional references as determined from
the Type information for the Exports section of the Specification Form. Then, for each data
item listed in the Exports section, complete an instance of the template for declaring exported
values, filling out the <exported_valuename> using the Export Name information on the
form and the applicable data type and package information placeholders.

CMU/SEI-94-TR-8

r'



The Import package code template comes in two parts. The Specification portion is shown in
Appendix E.9. To begin filling out this template, replace the <device_name> placeholder with
the applicable Subsystem Name from the Specification Form. Also, fill in the names of the
other subsystem or package placeholders where data types to be imported are declared. The
use of the Application-Signatures package is needed only if there is a case where the same
data item (by type name) can be imported from two or more sources, depending upon the

current operation being performed at the executive level. Remove this reference if all imports
come from unique sources, as determined by examination of the Source field of the Imports

section of the Specification Form. Then, for each item listed in the Imports Name section,
complete an instance of the import function template using the Name and Type information to
obtain the needed replacement for placeholders.

When the Import package specification is completed, begin the work of filling out the corre-
sponding Body template, shown in Appendix E. 10. Here is where the important task of binding
data exports to corresponding imports is performed. Begin by replacing the placeholders for
the <subsystemnname> and <other-export>S using the Subsystem Name and the Import
Source data to delineate the applicable export packages to be withed in (hence, the neces-
sity to declare the export packages before the imports). Then, for each import function de-
dared previously in the package specification, create an equivalent function body of the
applicable type corresponding to the need to specify a From source. In most cases, the func-
tion body will simply return the data value exported by the data object in the Export package.
In the case of multiple sources, the From parameter will be used to select the appropriate arm
of the case statement and return the applicable data object from the corresponding Export
package. Again, some of the Source export packages will not be available until the surrogates
are completed later as described in Section 6.2.3 and Appendix C.2.3.

B.8 Create Subsystem/Surrogate Controller Package Body

The Subsystem Controller code template (body) is shown in Appendix E.4. Begin the
completion of the template by replacing the <subsystemname> placeholders that occur
throughout the template. Note that when this replacement is performed, the Types, Imports,
and Exports packages are now correctly named for use in the Controller package body code.
Next, replace the <object> placeholders with appropriate references to Objects as defined
in the Objects section of the Subsystem Specification Form. These two sets of replacements
complete the context clause for the Controller body. The next step is to complete the bodies
for the operational subprograms using the sequence of events information discussed in
Section 5.8.

Events 1 and 2 are implemented by creation of an Ada case statement containing when
clauses for each entity to be handled and using the others syntax with a null statement or
error condition to complete the list of entity alternatives. Event 3 is implemented by filling in a
call to the applicable Object operation for the entity to be handled and corresponding to the
semantics of the subsystem call. Event 4 requires the use of an exception handler at some
level within the procedure body. Depending on the effect desired, exception can be handled

es CMU/SEI-94-TR-8



within the block statement that encapsulate the Object call with a specific exception handler,

or with a single exception handler just preceding the end of the subprogram being

implemented.

Repeat this step as needed for each subprogram stub in the Controller body. Finally, add calls

to applicable operations for any Objects that require explicit initialization in the final statement

block prior to the initialization of the InternalState variable.

The Surrogate Controller code template (body) is shown in Appendix E.13. After filling the

placeholders and creating the body stubs for the procedures defined in the Controller
specification, create the template by calling the operations needed to handle each call using
the Handlers and Transform packages. The style of these package is dependent upon the
implementation strategy used which is discussed in Section 5.6 of the report.

B.9 Create Object Manager Package Body

The Object Manager code template (body) is shown in Appendix E.7. After the replacement of
the <object-name> placeholder and the <subsystemname> placeholder to with in the

applicable subsystem Types package, the only other predefined step is to generate a body
skeleton for each operation declared in the Object Manager specification (completed in Sec-
tion 5.4).

CMU/SEI-4-TR-8 09



70 GMU/SEI-94-TR-6



Appendix C Using a Generic Design in Application
Development

This appendix contains the detailed descriptions for the process described in Sections 6.1 -
6.3 of this report. The details involve the specifics of using the information on the specification
forms to fill out code templates as found in Appendix E.

C.1 Create an Application Signatures Package

The Application Signatures code template is shown in Appendix E.14. First, the Application
Aggregate enumeration type definition is completed by naming each subsystem and surrogate
to be used in the application. This declaration will allow the executive to use the names of the
subsystems and surrogates in its decision 'logic. Two subtype declarations provide the
application with a single typename for use in describing the subsystem and surrogate subsets.

The next step is to define an enumeration type which defines the callable operations to be
supplied by subsystems and their underlying objects. The template gives a predefined set of
names: Construct, Destruct, and Fetch. These names correspond to those names given to the
callable subprograms supplied in the subsystem controller and object manager templates.

The last step is to define an enumeration type to describe an appropriate namespace for the
overall state of the application, i.e., the executive state. Again, the template predefines a useful
three state system:

1. Initialize - the system state before the executive invokes any subsystems and
surrogates to bring the system to a defined state of usability.

2. Steady - the system state in which the application is able to perform its
intended function(s).

3. Finalize - the system state in which the application, if possible, shuts itself
down in an orderly manner, saving system changes as listed before final exit.

Other states may be added as necessary for the executive to maintain an overall understand-
ing of the state of the application.

C.2 Complete Packages Making Use of Application
Signatures

C.2.1 Complete Surrogate Signatures Package
The first step in the process is to complete the Imports and Exports sections of the Surrogate
Specification Form started in Section 4.4. Name all of the values exported by the subsystems
for the surrogate's use (as listed in each subsystem's Exports Destination field) as Imports with
the corresponding Source. Similarly, name each value to be imported by the subsystems
whose Source is given as the applicable surrogate, and create a corresponding Export value

CMUI/S--94-TR-8 71

E.11 Surrogate Signatures Code Template



with the appropriate Destination. This information is needed to complete the Signatures
package because the entities to be handled by the surrogate must be defined via the
enumeration namespace.

C.2.2 Complete Surrogate Controller Package Specification
No additional description for implementation is needed at this point.

C.2.3 Complete Surrogate Import/Export Packages
See Appendix B.7 for details previously described.

C.2.4 Complete Subsystem Import Package Body
For each appropriate subsystem that can supply a needed data type for import, create a case
arm and name the applicable data item Name from its Export package. Be sure to use the
when others => null; clause to account for the unused subsystems.

C.2.5 Compete Surrogate Controller Package Body
The Appliration_ToDevice and its converse DeviceToApplication subprograms are filled
in using a format equivalent to that given for the subsystem controller subprogram bodies,
where the ENTITY parameter is used 'o select the appropriate branch/arm of a case statement
to invoke the applicable subprograms from the Transforms and Handlers accessible from with-
in the controller package body.

C.3 Complete the Executive Template
The Ada code template to use as a starting point is shown in Appendix E.15. Although the
construction of the executive will involve the construction of a significant amount of code
spanning many kinds of operations within an application, there is a recurring sequence of
steps to follow for each executive operation:

1. If the operation is invoked due to a transfer of control (i.e., a Signal return from
a surrogate), then use the appropriate DeviceTo._Application as needed to
transform and move any associated data to the surrogate's Export package.

2. Determine if a control loop exists between two subsystems and/or surrogates
with respect to the movement of multiple data items between. If one exists,
determine the appropriate Signal return value from a subsystem to be used
to terminate the loop.

3. Call the appropriate sequence of subsystem or surrogate subprograms to
achieve the desired effect, using the operational model as the basis for
determining what to call and in what order. The executive must pass the
subsystem the appropriate Entity, and possible Feature, information.

4. Ensure any potential error conditions are checked for after subsystem
operations by invoking the Signal function and comparing the results to the
nominally expected Normal value.

72 CMU/SEI-94-TR-8

...............



5. If the operation's final result is to send output via a surrogate, use the
appropriate Application ToDevice to initiate this output. Alternately, if a
subsystem genarates an error to be displayed by the UI device, the UI
surrogate's I pplicationToDevice subprogram that uses the
ErrorRetumrnype must be invoked.

Step 2 through 5 are applicable even in the initialization and finalization states of an
application, as much processing by subsystems is performed to upload initial state from
external storage, and, conversely, to download or verify final state prior to application
termination.

It is possible to segment the levels of decomposition into smaller Ada program units, if desired,
by using the "separate" facility of the language to create extra subprograms that still maintain
full visibility of the executive's control information, most importantly, the StatusType record.

CMU/SEI-94TR6 73

rI



74 CMU/Sr-i-94-TRO8



Appendix D Specification Form Templates

D.1 Subsystem Specification Form

Subsystem Name:

Description:

Overview of Requirements:

Features to be Supported:

Objects:

Imports:
Name Type Source

Exports:
Name Type Destination

Exceptions/Malfunctions:
Name Effect

CMWISE)-94-T". 75j
.- .-~ 2 ,

. . . . . . . . . . . . . . . . . . .



p

D.2 Object Specification Form

Object Name:

Description:

Overview of Requirements:

Features to be Supported:

Imports:
Name Type

Exports:
Name Type

Exceptions/Malfunctions:
Name Effect

78 CMU/SEB-94-TR-8



D.3 Surrogate Specification Form

Surrogate Name:
Description:

Type: monitor control (check one or both)

Connection to I/O device:
device name
size of data buffer (in bytes)

Im ports (for monitor surrogate):
Name Type Source

Exports (for control surrogate):
Name Type Destination

Exceptions/Malfunctions:
Name Effect

CMUM/SEI-047TR-. 77

.4." • • '.• . .. . ' r M



78 CML/AISI94m-Te-

4 p



-

Appendix E Ada Code Templates

E.1 Subsystem Signatures Code Template

with <object_ame>_Signatur*s; -- as needed for each object.

package <subsystem_name>_Signatur*s is

-- every subsystem controller has to differentiate between

-- the many objects and their parts that may be used.

-- Objects may perform operations differently depending

-- implemented or user-selected features, so entity names

-- may be combinations of entity and feature identifiers.

type ZntityType is ( <Znt_Name_l>, <Znt_Name_22>,
<EntName_3> .. <Ent_Name n> );

-- Subsystems may return errors and/or other Signal

-- information. Always includes a "Normaln or UOKN.

-- This type can be extended to incorporate any error

-- conditions to be propogated to the executive.

type StatusType is ( Initialized, Incomplete, Complete,
Invalid. ..... Normal );

type Krror_Type is record
STATUS : Status_Type;
ZUTITY : ZntityType;

end record;

end <subsystem_name> Signatures;

E.2 Subsystem Types Code Template

package <subsystemname>_Types is

type <naaedentityttype> is .... ;

-- Declare your types for import and export here if not
-- declared elsewhere.

end <subystemname>_Types;

C/-4.m87



E.3 Subsystem Controller Code Template (Specification)
with applicationS_Bignatures; -- if Source parameter used
with <mubsystem_nsme>_Signatures;
package <subsystemnams>_Controller is

-- Every subsystem controller has at least 3 procedures
-- callable by the executive, derived from these below
-- Optionally, the executive may require use of the
-- SOURCE parameter if multiple sources exist for
-- a particular data item.

procedure Construct( ENTZTY: in
<subsystemname>_Signatures. ZntityType

- - OURCE : in
-- Application_iBgnaturos.SubsysteType

procedure Destruct( ZNTITY: in
<subsystern_name>_Signatures EntityType )

procedure Fetch( EMTITY: in
<subsystem•name>_Signatures. Entity-Type )

-A- Additionally, each subsystem may provide means to
-- provide control information to the executive

function Signal return
< subsystemname>_Signatures. StatusType;

end <subsystemname>_Controller;

so CMLUSEI-94-TR-8



E.4 Subsystem Controller Code Template (Body)

with 8EU; -- global types
with <CubxystEm,_lmas>_)Typ@; -- the "local' types
with <ubsystemname>_Imports;
with <subsystoera_name >_Zoz.ports;

-- all objects that are part of this subsystem
with <object1>_Manager;
with <objectn>_Manager;

package body <subsystemnam>_Controller is

-- local variables declared here
INTZMNAL_STATZ : <subsystem_name>_Signatures.StatusType;

procedure Construct( C NTITY: in
<ubsystemname >Signatures .ZntityType;

SOURCE : in ApplicationSignatures.8ubsystem ) is
begin
case ENTITY is

-- algorithm for choosing correct Entity Construct call
en~d case;

end Construct;

procedure Destruct( Entity: in
<•ubsyatemnam >_Signatures. EntityType ) is

begin
-- algorithm for choosinging correct Entity Destruct call

end Destruct;

procedure Fetch( Entity: in
<subsystemname>_Signatures.EntityType ) is

begin
-- algorithm for choosing correct Entity Fetch call, etc.

end retch;

function Signal return
<subuystemnams>_Signatures. Status_Type is

status : <cubsystem namo>_Bignatures.Status_Type
:= INTEIRAL_STATE;

begin
INTERNAL_STATE :- <subsys]ntem_naae>_Signatures. NORMAL;
return Status; -- return an appropriate value

end Signal;

begin
-- any initialization code goes before this statement
INTZRRELSTATE : - <subsystm..naae>_Signatures. INITIALIZED;

end <subsysteaname>_Controller;

CMU/SEI-.4.TR-8 81



E.5 Object Manager Signatures Template
package <object_name>_Signatures is

type <features-group> is ( <feature.l>, ..- , <featuren> );

end <obJectname>_Signatures;

E.6 Object Manager Code Template (Specification)
with SlU; -- global types
with <cobJect_name>_Signatures; -- if used!
with ... ; -- other needed data types;
package <obJect_name>_Xanager;

-- The procedures below are overloaded as needed for each
-- parameter profile. Add parameters to facilatate use of
-- features in the Signatures package as required.

procedure Construct (
<c _Parameter_1>: in SEU.c<n_Type-l>;
<I _Parameter_2>: in SEU.<Xn_Type_2> );

procedure Destruct (
<In_Parameter_l>: in SZU.c<n_Typel>;
<c _Parameter_2>: in SEU.c<n_Type_2> );

procedure Fetch (
<cnParmter_l>s in SEU.c<n_Typel>;
<Xn_Parameter_2>: in SEU.c<ln_Type_2>;
<Out_ParameterI>: out SEU.<OutType.l>;
<Out_Parameter_2>: out SEU. <OutType_2>);

-- Zxport any error information as exceptions to
-- calling Subsystem and name the subprogram(s)
-- able to raise them.

<<rror_Condition_1> : exception;
-- raised by ...

<Error_Condition_n> : exception;

end <objectname>_Manager;

82 CMLVSE3-94-TR-8

7 '1, s



E.7 Object Manager Code Template (Body)
with BZU; - - global types
with <subsystem-name>_Types; -- ,local' types

package body <Object>_Kanager in

type (Local_Object> is ... ;

- - declaration of state data
<ObjectName> : <LocalObject>;

procedure Construct (
<14 Parameter_1>: in S2U. ZnýTyPe 1>;
<1z3_Parameter_2>: in SZU.<InýType_2 ) is

begin
- - algorithm goes here

end Construct;

procedure Destruct(
<In Parameter_-1>: in SEU.<In.Type 1>;
<Ia .Parameter_2>: in 83U.<In-Type_2> )is

begin
- - algorithm goes here

end Destruct;

procedure Fetch(
<Izk Paxamete_:_1>% in sZO<dlnType 1);
<In Parameter_-2>: in SEU.<In.Type_2>;
<Out-Parameter_1>: out SZU. COut-TyPe_1>
'Out-Parametor_2>: out SZl. <Out-Type_2>) is

begin
- - algorithm goes here

end Fetch;

end <object>_Manager;

E..8 Export Package Code Template
with Sill; - - global types
with <subSYstem..naine> Types; -- 'local' types

Package <s~bsYs ternname>_Zxports is

<exported.-valueý-name_1> : SEU-<type-name>;

Ce:xported,_value_name_a> :
<subsys ter~n nm>_Types. Ctype.naae>;

end csubsyaste-name>_zxports;

CMUISEI-94-T"- 83

z.



E.9 Import Package Code Template (Specification)
with SlUg - - global types
with ApplicationSignatures;
with <subsystema inam.>_Types; -- other subsystem types

witih <subsystsW_.Nnam>_Types; -- as needed
package <subsystem_naae>_Imkports is

function <Lmporti> return ciuvortiltyv*>;

function <import2>
From : in Application.Signatures.Subaystea

return da~port2_typ.>;

end 'Csubsystezanaae>_1mports;*

E.1 0 Import Package Code Template (Body)
with <other exporti>;
with <other~export2>,
package body <subsystmwnam.>_Imports is

function <importl> return <imqportl~type> is
begin

return <othereoxport1 data>;
end;

function daixport2>
From : in Application...Signatures.subsysteat

return <import2_type> is
begin

case From is
when s*ubsyutem...X> m>

return <other_export2_data>;
end case;

end;
end <subsysteW name>_laports;

84 CMU/SEI-94-TR-8



E1 1 Surrogate Signatures Code Template
-- The• e 'withs' are needed only for Ul device
with ApplicationkSignatures;
with <subsystem_3l>_Signatures,

with <subsystem n>_Signatures;
package <devicename>_Signatures is

-- Depending upon the number of items, the device
-- can either declare its own Entities or use those names
-- declared in other Signatures packages.

-- Devices may return errors and/or other Signal
-- information. Always includes a "Normal" or "OKf.
type Status_Value is (Initialized, ... , Normal);

-- For the surrogate to a User Interface device, the
-- Status_Value is a layer of records that provide the
-- Executive with the user selected operations/options.

type StatusValue( SUBSYSTEM :
ApplicationSignatures.SubsystemType ) is

record
Operation

ApplicationSignatures.OperationType;
case SUBSYSTEM is

when <subsystem_1> m>
<subsysteml>_Entity

<subsysteml>_EntityType;

when <subsystemn> ->
<subsystem_n>_Entity

<subsystemn>_EntityType;
end case;

end record;

-- Also need to make the Error info. available to the UI

type Error_ReturnType( SUBSYSTEM :
ApplicationSignatures.ApplicationAggregate ) is

record
case SUBSYSTEM is

when <subsysteom_> ->
<subsystem_1>_Error :

<subsystem.l >_Signatures. ErrorType;

when <subsystem_n> ->
<subsystem_n>_Error

<subsystm _n> Signatures. ErrorType;
end case;

end record;

end <deviceý-name>_Signatures;

CMU/M-94-TR-8 85

/4



E.12 Surrogate Controller Code Template (Specification)

with <device_name>_Signatures; -- Signal return values
with <cubsystm_1>_Signaturei; -- Subsystemsx to be handled

with <subsystem_n>_Signatures;
package <devicename>_Controller is

-- Send application data (via Export) to device
procedure applicationTo_Device( Entity : in

<cubsystem_x>_Signatures. •ntityType ),

-- Receive data from device
procedur'e Device__Topplication( Entity : in

<subsystem_x>_Signatures. EntityType );

-- For the UI ,device,, there is a notion of a Key which
-i- i sent in isolation so that the application can Search
-- for a complex value based on the given Key.

type DataKind is ( Key, Entity );

procedure Device_To_Application(
Entity : in <subsystem-x>_Bignatures.

EntityType;
Kind : in Dat&_Kind );

-- Receive status/error information from device
function Signal return

<device_name>_Signatures.StatusValue;

end <devicename>_Controller;

SOCMULVSB-94-TR-8

I ; 'W

"[R4



E.1 3 Surrogate Controller Code Template (Body)
package body <devic*_name>_Controller in

procedure ApplicationTo_Device( Entity : in
<subsystem-x>_Signatures.Entity...Typ5 is

begin
- - select proper transform algorithm

end ApplicationToDevice,

procedure Devi ce_To-hpplicatiLon( Entity : in
<subsystem_x>_Signatures.Entity-Type ) is

begin
end Devico..To.)pplicatiofll

- - or

procedure Deviceý_Toý-Application(
Entity t in <subsystem*>-Signatures.EntityType;
Kind : in DataKind ) is

begin
end Device_To...Application;

-- Receive status/error information from device
function Signal return

<devic-name>-Signatures.Status_Value is
begin

return ... ;

end Signal;

end <device_name>_jController;

CMUM8Ej44-TR.6 87 2

A'.,~~7 4*I*%



E.14 Application..Signatures Code Template
package Application..Signatures is

type ApplicationMagregate is
<=srr~gate..1-........surrogaten>,
<subxystm...1>, C subsystea..2>,

<subsystsW..n-I>, <subsystýrn>n)

subtype Surrogate-Type is Application-Aggregate
range <surrogateL-l> .. -surrogate..nji

subtype Subsystem....ype is Appi ication.Aggregate
range <subsystook.1 - . ýcsubsystsekn> j

-- The 'coinon' operation names!
type Operation is ( Construct, Destruct, Fetch )

type ApplicationState is CInitialize, Steady, Finalize )

end Application.Signatures;

as CMU/sEI-94-TR-8



E.1 5 Executive Template
with < subsystask-1l>-Sign es;
with <subsysteW__n>_.Sigt eLos
with Awplication...Bignaturos g

with <subsystsW_.l)_Controller,
with <subsystem_n>_Controllerj

procedure Executive in

-- Renaming of all 'with'ed packages to improve readability

package APP renames Application, f;'natures;

ProgramState APP.Avplication_ ca'* :w JIPP.INITIALLZZE;

User_Selection :xxB.Status_Type;

begin
-- Call any needed initialization procedures here!

Program...State := APP.STZADY;

while Programk_State - APP.STEADY loop
UserSelection :a UZC.Signal;
case Userelection.Subsystsmt in

when ALPP.<subsystea_1> ->

case User_Selection.Operation is
when APP.Construct =>

case Userý_Selection.<entity-name> is
when xx5.<entity....> ->

case UserZ_Solection.<featuregroup> is
when xxS. <feature_name> ->

end case;

when 8z.<entityA> =>
xuC.Construct( <entity~n> )

end case;

when APP.Destruct =>,

when APP. Fetch ->

end case;
end came;

end loop;

-- Call any finalization procedure here;

end ZSmctutive;

CMWSEI44.TR4 8



go~cMLUSEI-04.TR-8



Appendix F Implementation Issues Affecting
Reuse

Appendix F discusses some of the implementation issues dealt with during the trial usage of
these processes, focusing on Ada language interface issues, and the idiosyncrasies found in
implementations of Ada input/output packages. [Hefley 92] contains more information about
other such issues involved in the use of Ada. This appendix also provides some specific ex-
amples of "C"o code used in the user interface portion of the movement control prototype used
as the example case in the report, focused mainly on the description of several reusable ab-
stractions for X/Motif input and output.

F.1 Interfaces to Other Languages/Environments

One of the perceived strengths of Ada is its ability to interface to code written in other
programming languages. However, this strength is not without caveats. First, the Ada
language's interface capability is NOT required to be supported by valid Ada mompilers.2

Second, even if the compiler does support the interface capability, how the interface is
implemented is vendor dependent, other than the required use of the pragma Interface. Third,
the reverse capability of calling Ada from other languages is not defined with the language.3

None the less, most Ada implementations are providing the interface capability and many of
the vendors are using a standard (yet still somewhat ad hoc) nomenclature for their interface
pragmas.

F.1.1 Use of Xll and Motif with Ada

Access to Ada bindings for X11 and Motif is the preferred means for utilizing the powerful
functionality provided by these pieces of software for creating a Graphical User Interface (GUI)
to be used in highly interactive applications. Unfortunately, not everyone has access (due to
cost considerations, chief among many reasons) to usable bindings for current, i.e., widely
used, versions of XlI or Motif. 4 However, due to the interface capabilities described above,
one can write a GUI using X and Motif calls in the C language. There are two major issues
involved in doing this:

1. The X/Motif event loop must be able to respond to user events (i.e., mouse
movements, button or key presses and releases) in a thread of control sepa-
rate from that maintained by the executive and other subsystems. This need
requires that Ada's tasking mechanisms be used to provide the ability to han-
dle multiple threads of control.

. The C8" programminkg language wE be referred to hereafter without the use of quotation marks for brvty.

2. See (Ada 83, 119(4).

3- see IA&en 631 19(e).

4- X11R6 and Mof v1.1 attoe ime of this repor.

CMULN-04-TR4 91

r..'



2. It is difficult, if not impossible, to ensure that various C implementations use
the same internal representation for s truc ts, the Ada equivalent of records.
The equivalent of the Ada representation specification clause, documented in
Section 13.4 of [Ada 83], is not available in C. Even though most C compilers
do not attempt to reorganize structs in order to optimize the storage size or
alignment of internal fields, there is no requirement that they maintain the
representation given. Thus, there is no guarantee that data structures are
portable across multiple platforms and compilers.

The net result is that there is no way to ensure that data structures written to
be transferable across languages in one environment will be reusable in
another environment. Therefore, the lowest common denominator solution is
to choose a single data type that can hold, in theory, information of any other
data type and have the language transform important data structures into and
out of the single data type.

The common data type is the string, an array of or pointer to a sequence of characters, which
in C is logically terminated by the ASCII NUL value (zero) and in Ada by the fixed size of the
array. Both languages provide useful functions that take numeric-based data and transform it
into strng equivalents and vice versa. As long as the code in both languages knows the order
in which the data is embedded in the string, each can maintain record structures for internal
use, but also transfer data between each other using the string as the common structure.

Section F.3 documents some C/X/Motif subprograms that are reused, in some cases dozens
of times, throughout the GUI code in the movement control example. 5 The Print and
conversion functions described therein provide some of the mechanisms used to deal with
issues related to the use of strings as the data transfer method.

F.1.2 Calling C Within Ada and Ada Within C
To call Ada code from C, the C language requires that the subprogram be specified using the
extern notation to identify the subprogram whose implementation must be matched with the
specification at link time. Similarly, the Ada language uses compiler directives called pragmas
to identify subprograms whose implementation (body) will be either supplied by another
language (importation of functionality), or whose implementation satisfies the needs of a
subprogram specified in another language (exportation of functionality).

F.1.3 Ada Tasking in an Application with a C/"X"-Based GUI
The end result of using all of the capabilities listed in the previous sections is a tasking
architecture for systems with a GUI illustrated in Figure F-1.

This figure shows a design utilizing four Ada tasks. Two of the tasks, Blocking Input and
Blocking Output, are passive buffer tasks that provide a mailbox capability for data, i.e.,
strings. They are passive In that they do not make any calls, they are only called by their users,

I Due to the Mse (2000M OOn+.), the cOmpkse code for the GUI is nib inclded in Appendix H where exmpvl-
COd s d sown

92 CMUM/EI-04..TR4

~ ~ 4



as shown by the small control arrows in the figure. The Blocking feature is used to ensure that

it one data block is sent, another data block cannot be sent until the first has been received,
i.e., removed from the mailbox. This ensures that no data is lost and that data blocks are
received and used in the correct order. The other two tasks are active, the Executive (the main
program task) and the GUI. This Ada task utilizes the Ada calling C capability to run the C main

procedure, which maintains the X Event loop as required. The C calling Ada capability is used
in the implementation of the sendbuf and rcvbuf routines, which really are calls to Ada task
entries for the Blocking Input and Output tasks.

Ada ead nputsendbuf

Executive GUI Task
& Subsystems Motif)

Figwe F-i: TaMsdng Archlsctwr Using a Separate X Event Loop

F.2 Using Ada IIO for Files

Another area where many current Ada compilers present some problems in the
implementation of the example code is in the use of Ada file formats. Some mechanism was
needed for maintaining some persistent storage of useful data, like maps, organized convoys,
vehicle data, etc. In full implementation of movement control systems, a database system,
usually a relational database, is the preferred means for storing and accessing large amounts
of interrelated data. Because of the nature of the project and the complexity of designing a
suitable database schema, the example code uses file handling capabilities provided by the
Ada lanuage. In particular, a package called DWre•-0 povides (in theory) random access
to data in file via use of a COUNT value that produces a unique key to provide more direct
access to records. Unfortunately, at least one compiler had problems in its Direct_10
inplementaion when Ada variant records of different sizes were required in the same files.

CW .SEW4-TR-



One implementation was unable to keep track of a suitable EndOfFile (EOF) marker, and
thus, raised various exceptions when the EOF was not found. Therefore, alternate
implementations of some of the subsystem I/0 packages were required, using the
Sequential-lO package as the basis for storing data and using additional Text_lo files to store
some information about the number of records, etc. that Direct_10 provides intrinsically. Even
then, some compilers require use of the implementation-dependent file attribute, FORM, to
make the file format needed acceptable.

F.3 Motif/X/C Code Examples

This section presents some examples of code developed for the initial version of the GUI for
the movement control prototype built to illustrate the utility of the Mapping Processes. The
code and these descriptions were written by Mr. Greg Walker, a summer intern on this project
in 1992.

F.3.1 Print Function
The function mySprintf () works a lot like the standard C I/O function sprintf () except
that the result is written in a static buffer. This relieves the calling routines of having to declare
a buffer. The drawbacks are that subsequent calls to mysprintf () overwrite the previous
call's results and the buffer i. is a fixed size. mySprintf () enables code fragments such as:

char buffer[64];
sprintf(buffer,-the answer is %d-,56);
dosomethingwith (buffer),

to be rewritten as:

dlooamethingWith(mySprintf ('the answer is ?,d4, 56));

F.3.2 Converting Strings Between Xll and C
The function unXmString () is a wrapper around XmStringGetrtoR () which converts
XmStnngs into C strings. Each call to unXmString () frees the result of the previous call. Uke
mySprintf 0, subsequent calls to unXmString () destroy the results of previous calls.
unXmString enables code fragments such as:

char *text;
Z--tringGetLtox (string, XUBTRZIG_DUALYUZ€_CN•ABZT, &tezt);

IooinethnLlith - ttextzt);
xZrree (tet) a

to be rewritten as:

doleinthingWith (unZmgtring (string));

94 CMU/SiE-4-TR-8 i



The function xmString () is a wrapper around XmStringCreateLtoR () which converts C
strings into Xmtrings and it also relieves the caller from having to free the result. It gets
around the problem of subsequent calls destroying the results of previous calls by keeping, in
an array, the last 100 results generated. The 101st call to xznString frees the 1st result, the
102nd call frees the 2nd result, and so on. This way fragments such as:

doSamthingWith(uAtriing ( "lello ), xmString( LWorldN))

will work in a desirable manner, that is, the 2nd call to xmString () does not destroy the result
of the 1st call.

F.3.3 Routines Utilizing Abstractions of Motif Widgets

The routine feedListWidget () is a wrapper around XmListAddItemUnselected ()
which accepts an array of items to be added. Also, it accepts the items as C strings and takes
care of converting them to XmStrings. This is used primarily in the inputo described below.

The routine popupMessage () creates a message dialog shell/box, displays a message, and
returns the users response. The parent argument is a widget to be used as the parent for the
dialog; the dialog will probably pop up on top of it. The type specifies the symbol to be
displayed beside the message; it must be one of the valid dialogTypes for a Motif
MessageBox. If the type is XmDIALOG_ERROR, XmDIALOGINFORMATION, or
XmDIALOG_MESSAGE, the cancel button will not be displayed. The message argument is a C
string.

popupMessage () retums 0 if the user clicks Ok or -1 if the user clicks Cancel. A problem with
this routine is that in order to prevent the user from doing anything else with the application
until he has answered the dialog, the root widget's sensitivity is set to False; this causes some
widgets to change their appearance.

The routines popupCancelCallBack () and popupErrorMessage () are trivial helper
functions. popupErrorMessage () is a wrapper which sets the type to XmDIALOGERROR.

The input () function is a generalized means for creating dialog boxes which allow the user
to enter/edit information. The dialog boxes can contain fields of various types which are
constructed using enumeration literals and parameters as follows:

iziput: (parentWidqot,
iLabsel, Nello world.",
izoolean,"this is a boolean",&booloanVariable,
iZumn, Nmro"l', mon, "two", "three", NULL, &intVariable,
iString, "Name:0- ,&charlPointezvariable,
ilnt, vget",&intVarjable,
iiloat, "four best estimate of pi",&floatviarjble,
insuColuln,
iEl.ction, arrayOf Strings, si zeOfArray, &charlPtzVar,

CMU.SE1 -"TR-e 95



Each of the field types can be used as follows:

"* iLabel creates a label widget displaying the given string.

* iBoolean creates a togglebutton displaying the given string. The button's
state is initially set to the value of the given boolean variable. If and when the
user clicks Ok, the boolean variable is updated to the current value of the
toggleButton; the variable is left unchanged if the user clicks Cancel.

" iEnum creates a radioBox using the 'pven NULL terminated list of strings.
The value of the intVariable determines which of the radioButtons is initially
set. If and when the user clicks Ok, the intVariable is updated to reflect that
radioButton which is currently set; if the user clicks Cancel, the intVariable is
left unchanged.

" iString, ilnt, and iFloat will each create a textField with a label beside
it, allowing the user to edit a stringfint/float. In the cases of lint and iFloat,
the variable will not be changed if the user types in something that is not a
number. In the case of iString, the initial value of the variable is assumed
to be a malloc'ed C string. If the user changes it and clicks Ok, the old value
will be free'ed and space for the new value will be malloc'ed.

" iNewColumn says that a new column should be created and subsequent
fields should be placed in it. All the previous fields were arranged in a single
vertical column.

" iSelection creates a scrolled list using the given arrayOfStrings, and also
creates a textField which is managed a lot like a textField created by
iString except that the user can also set the string by clicking on one of the
items in the list.

"* The list of field declarations must be NULL terminated.

input () accepts a variable number of arguments so that arbitrarily large dialog boxes may
be created. input () makes no attempt to check its arguments for errors; the programming

utilities cc and lint won't help either.

input () assumes that the *XmList .visibleItemCount resource is set to a reasonable
value. This is done in the fallbackResources. input () issues the same return values, and
has the same problem with sensitivity as popupMessage ().

The routine drawlcon() draws a pixmap (icon) whose dimensions are width*height,
centered about the point (x, y). It also centers the label underneath the pixmap.

96 CM/SES-94-TR4

7 -



Appendix G Sample Completed Specification
Forms

GA1 Asset Manager Subsystem Specification

Subsystem Name:
AssetManager

Description:
Manages the assets involved in movement planning (vehicles, transportation networks, equip-
ment).

Overview of Requirements:
Manage information about military vehicles and combinations c( vehicles.
Source: CMU/SEI-9 1-TR-28, section D.2.4. 5.

Features to be Supported:
Determination of vehicles needed to facilitate a move or series of moves, in support of the
planning of movement operations.
Source: CMU/SEI-9 1 -TR-28, section E. 1. 1. 3.

Objects:
Vehicle

Imports:
Name Type Source

Model_Orý_Combo_ID Vehicle-Types.Model_ User._Interface
Type

VehicleID Vehicleffypes.Specific... UserInterface
VehicleId

Vehicle Vehicle-Types.Vehicle_ UserInterface,
______________Type DataBase

Combination Vehicleffypes.Vehicleý_ DataBase
Combination

cM/SEI-94.Tw4 97 4

'n'4



Exports:

Name Type Destination

Vehicle VehicleTypes.Vehicle_ User_Interface, Data_Base
Type

Vshicle_Combination Vehicle_Types. Vehicle_ Convoy-Builder, DataBase
Combination

Exceptions/Malfunctions:

Name Effect

AssetManager.Signatures. INVALID Fetch of specific asset information not
found in object

S98 CMU/SEI-94-TR-8 7?

4 .



G.1.1 Vehicle Object Specification

Object Name:
Vehicle

Description:
Stores information about vehicles and combinations of vehicles.

Overview of Requirements:
Information includes vehicle ID, type, width, height, length, and load-carrying capacity.
Source: CMU/SEI-91-TR-28, section D.2.4.5.2.3.

Features to be Supported:
Allow the user to enter, delete, and find vehicle type and other composition data (e.g. height,
width, weight) relevant to convoy building.
Source: CMU/SEI-91-TR-28, sections E 1.1.3.1.1 and E. 1. 1.4.1.1.4.

Imports:

Name Type

Model_Or_Combo_lD VehicleTypes.ModelType

VehicleID VehicleTypes.SpecificVehicleld

Vehicle Vehicle .Types.VehicleJrype

Combination VehicleTypes.Vehicle_Combination

Exports:

Name Type

Vehicle VehideTypes.VehicleType

VehicleCombination VehicleTypes.VehicleCombination

Exceptions/Malfunctions:

Name Effect

Not_Found Fetch of information relating to vehicles or
combinations abandoned because of

missing or incorrect data.

Y- 7 1~
CMU/SEI-94-TR-e 99

A ~. ~ . . ~ '~~~i'< - ~ - '14



G.2 Data Base Surrogate Specification

Surrogate Name:
Data_Base

Description:
Provides an interface between a physical external data base and the other subsystems com-
prising the Convoy Planner prototype. This surrogate manages the creation, deletion, reading,
and updating of database items. The prototype implementation uses stored files, rather than
an actual database management system.

Type (check one or both) Connection to VO Device

Monitor Control Device Name Data Buffer Size
(bytes)

Yes Yes Ada file VO N/A

Imports: (for control surrogates)

Name Type

Vehicle VehicleTypes.VehicleType

Combination VehicleTypes.Vehicle_Combination

Map-Name String

Vertex MapTypes.VertexType

Arc Mapjypes.Arc Type

LogicallldValue Natural

Convoy-Name DataBaseTypes.ConvoyElementType

Convoy-Parameters DataBaseTypes.ConvoyParameters_
Type

Exports: (for monitor surrogates)

Nane Type

Recordsin_File Natural

Modelild VehicleTypes. ModeLType

Vehicleld VehicleTypes.Speciftcehile ld

Vehicle VehlcleTypes.Vehicle-Type

100 CMLVSEW4-TR-e

• ,.



Name Type

Combination Vehicle-Types.Vehicle-Combination

Convoy-Name String( 1 . DBjrTypes.Max-Name-Length )

Convoy-Part DBTypes.Convoy-ElementjType

Convoy-Data DB- Types. Convoy-Parameters-Type

Map-..Name String( 1 .. DBjTypes.Max-Name...Length )

Vertex(_Data Map-Types.Vertex-Type

Arc_-Data map-Types.ArcType

Logicalt&.-Value Natural

Exceptions/Malfunctions: _____________

(Namne Effect

DataBase__Signatures.NOTFOUND Opening of specified file abandoned.

CMU/8044.TR-8 101

~~"b - --



- -t

C

1W ctdtwsEI44-TR-e

4

An �j:t;s:•- t� :�t #< >m�� :-. -412 �4-. .-



Appendix H Movement Control Example Code
This appendix contains a large sample of code to illustrate the application of the processes
described in this document using a FODA domain model and the OCA as the architecture. The
executive, one subsystem (the Asset Manager) with its objects and supporting components,
and one surrogate (the DataBase) with its Handler/IO packages are listed in the following
sections.

H.1 Executive

with System;

with Application.Signatures;
with User_Interface_Signatures;
with DataBase._Signatures;
with Mapper-Signatures;
with AssetManagerSignatures;
with Convoy-Signatures;
with ConvoyBuilderSignatures;
with MarchTableSignatures;

with UserInterface_Controller;
with Data_BaseController;
with Mapper_Controller;
with Asset_Manager_Controller;
with ConvoyBuilder_Controller;
with March._Table_Controller;

Procedure Executive is

-- Renamings of important packages
package APP renames ApplicationSignatures;
package UIS renames UserInterfaceSignatures;
package DBS cenames Data_BaseSignatures;
package MPS rnms Mapper-Signatures;
package AMS reames AssetXanagerSignatures;
Package CS zenames ConvoySignatures;
Package CBS renames Convoy_BuilderSignatures;
package MTS rename March_TableSignatures;

Package UIC reansms UserInterfaceController;
Package DBC renames DataBaseController;
Package MPC renanes MapperController;
Package AMC renamos Asset_Manager_Controller;
Package CBC renames Convoy_Builder_Controller;
Package KTC renams MarchTableController;

functio ( L, R : in APP.Status_Type ) return Boolean renames APP. 9=;

unctio = L, R : in AMS.StatusType ) return Boolean renams AMS. "=;
function u~w( L, R : In DBS.StatusType ) return Boolean reanmse DBS. "=;
function '( L, R : In CBS.StatusType ) return Boolean reams CBS. =9;
fanation '= ( L, R : in lPS.Status_Type ) return Boolean reamsI MPS.-=9;
funatios "- L, R : In XTS.StatusType ) return Boolean rum s WTS. 9 .9 ;

PrograAState APP.Status_Type : APP.INITIALIZE;

OMU/SEI4WTR4 c

U1-j ;.



User_Selection :UIS.Status...Type;

begin - Executive

--Initialization code to read Vehicle files and the Convoy and Map lists.
DEC.Application_To_Device( ENTITY -> DBS.MODEL_LIST,

STATUS -> ProgramState )
UIC.Application_To_Device( DBS.NODELID )
loop

DBC.Device...ToApplication( DES.MODEL )
exit when DBC.Signal = DBS.END_OFFILE;
DEC .Device_!r.oApplication( DES .MODELk-ID )
ANC.Construct( ENTITY => AMS.MODEL.

SURROGATE => APP. DATA-EASE )
UIC .Applicatioriro..Device C DES .MODEL-.ID )

enA loop;

DBC.ApplicationTo_Device( ENTITY => DBS.VEHICLELIST,
STATUS => ProgramState )

UIC.Application_To_DeviceC DES.VEHICLE_ID )
loop

DEC .Device...ToApplication C DES. SPECIFICVEHICLE )
exit when DEC.Signal = DES.END_OF_FILE;
DEC. Device-To..Application C DES .VEHICLEID )

-- AMC.Construct C ENTITY => AMS.SPECIFIC_VEHICLE,
-- ~SURROGATE => APP. DATA.B.ASE )

*UIC.Application_To_Device( DES.VEHICLELID )
end loop;

DEC.Application_To_Device C ENTITY => DES.COMEINATION _LIST,
STATUS => Programt...State )

UIC.Application_To_Device( DES.COMBINATION1_D )
loop

DEC .Device...ToApplicatjon C DES .VEHICLE_COMBINATION )
exit when DEC.Signal = DBS.ENDOF_FILE;
DBC.Device..To-Application( DES.COMBINATIONID )

-- AMC.Coistruct( ENTITY => AXS.VEHICLE_COMBINATION,
-- ~SURROGATE => APP. DATA_EASE )

UIC .Application_To_Device C DES .CONBINATIONID )
e"d loop;

DEC .APPlication...To..Devjce C ENTITY => DES .MAP_.LIST,
STATUS => Program...State )

UIC .Ajplication_..To..Devjce( DES .NAP....ANE
loop

DBC.Device...TO_.Applicatjon( DES.MAPXAME )
Quit wben DEC.Signal = DES.DID_OF_FILE;
VIC. Application_.ToDevice ( DBS.MAPJ(ANE )

men loop;

DBC-AP~liCatio-To-DevjCe( ENTITY => DBS.CONVOY_LIST,
STATUS -> ProgramState )

UIC .ApplicationToDevice ( DES .CONVOYXLME )
loop

DOC. DeVice...Topl ication ( MS. CONVOYJWIE )
eizit whm C. Signal a S DssDwoFFJILz;
UIC .Avplication_.To...evice C DES. CoNvoyJWIE )

me. loop;

104 CMUiS544-Th4



-- Initialization complete, give the user CONTROL!

Program...State :=APP.STEADY;

while ProgramLState = APP. STEADY loop

User...Select±ion: UIC.Signal;
came User...Selection.SUBSYSTM2 in

when APP.USER..JNTERFACE =>
came User_Selection.OPERATION is

when APP. DESTRUCT =>
ProgramLState APP. FINALIZE; -This is QUlTflIf

when others => null;
end case;

when APP. DAT&EBASE =>
case UserSelection.OPERATION is

when APP.CONSTRUCT =-I null;

when APP.DESTRUCT =>
case User_Selection.DATA-_BASEENTITY is

when DBS.MAP =:,
UIC.Device...To_.Application( DBS.MAPNAME )
DBC.Application_To_DeviceC DBS.MAPNAME )

when DBS .CONVOY =>
UIC.Device...To..Application( DBS.CONVOY-NAME )

when others =>null;
adcase;

whnAPP.FETCH =>
caeUser...Selection.DATABASE_ENTITY is
when DES.MAP =--

UIC .Device....o_.Application( DES .MAPýNAME )

If DEC.SIGHAL = DES.NORNAL then
DEC .Deviceff_T..Application( DBS .VERTEX )
UIC.ApplicationToDevice( DES.VERTEX )
loop

DEC.DeviceTo_.ApplicationC DES.VERTEX )
exit when DEC.Signal = DBS.END_OFFILE;
UIC .A plication..ToDevice ( DES. VERTEX )
HPC .Construct ( EITITY => IPS .VERTEX,

SOURCE => APP. DATA-..ASE )
end loop;

DEC.DeviceTohAplication( DES.ARC )
UIC .A~plicationToDevice C DES .ARC )
loop

DOC. Device...'1o..AWlication ( DES.ARC I
suit whnDEC.Signal = DES.END_OF_FILE;
UIC.ApplicationToDevice( DDS.ARC )
KPC.Construct( ENTITY M PS.ARC,

SOURCE =~APP.DATAE&E )

C~us8EW*Th4 ----- -105



en4 loop;

DBC.Device_To...Application( DBS.LOGICAL-ID .

UIC.Application-To_Device( DBS.LOGICAL...ID
DBC.Applicationý_ToDevice( ENTITY => DBS.MAP,

STATUS => APP.FINALIZE )
else

UIC.Application_To_Device( ( SUBSYSTEM =>
APP. DAT&-BASE,
DATA-.BASE_ERROR =>
ENTITY => DBS.NAP,

STATUS => DBS.NOTFOUND));
end it;

when DBS.CONVOY =>
CBC.Destruct( CBS.Convoy )
UIC.DeviceTo_Application( DBS.CONVOYý_NAME )
DBC.Application_To_Device C ENTITY => DBS.CONVOY,

STATUS => APP.INITIALIZE )
DBC.DeviceToApplication( DBS.ELEMENT )
UIC.ApplicatiorxToDevice( DBS.ELDIENT )
loopi

DBC.DeviceTo....pplication( DBS.ELEHENT )
exit when DBC.Signal = DBS.END_OF_FILE;
UIC.ApplicationTo_Device( DBS.ELEMENT )
CBC.Construct( CBS.CONVOYý_PART )

OWd loop;
DBC.Device_To_Application( DBS.PARAMETERS )
CBC .Construct ( CBS .CONVOYPARAMETERS );
DBC.Application_To_Device( ENTITY => DBS.CONVOY,

STATUS => APP.FINALIZE )

when others => null;
end came;

end case;

when APP.CONVOY_BUILDER =>
case User_Selection.OPZRATION is

when APP. CONSTRUCT =>
case User_Selectiori.CONVOY_BUILDERENTITY.ENTITY in

when CBS.SUBUNIT =>
UIC .Device_.To...AWlication C CBS.SUBUNIT )

CEC .Construct C CBS. SUBUNIT )

when CBS.VEHICLE =>
UZC.Device...To..AI~lication( CBS.VEHICLE )
case UserSelection. CONVOY...BUILDER...ENTITY. IMPORT

is
When AlS .HODEL =>

AMC.Fetch( ENTITY => AMS.MODEL,
AS...TYPE =>

ANS .VEHICLESCOKBINATION )

when AilS. SPECIFICVEHICLE =>
MIC.Fetch( DITITY => AIS.SPECIFIC_VEHICLE,I. ~AS..TyPE =>

AIS .VEIICLL.COMBIWLTION);

whoa MIS. VRHICLS-..CQIBIN&TION = 4

10 CM MB**4-*R*8



AlEC. Fetch( AES .VEHICLE_COMBINATION )

when others => null;
end case;
CBC.Construct( CBS.VEHICLE )

When CBS.SPEED =>
UIC.Device....o_.Application( CBS.SPEED )
CBC.Construct( CBS.SPEED )

when CBS.GAPDISTANCE =>
UIC .Device-roApplication( CBS .GAP_ýDISTANCE )
CBC.Construct( CBS.GAPý_DISTANCE )

when CBS.GAPDISTANCES =>
UIC .Device...To_.Application (CBS. GAP..DISTANCES);
CBC.Construct( CBS.GAP__DISTANCES )

when CBS.GAPMULTIPLIER =>
UIC .Deviceý_ro.Application (CBS. GAPMJULTIPLIER);
CBC.Construct( CBS.GAPý_MULTIPLIER )

when CBS.GAP..YULTIPLIERS =>
UIC. Devicero....Application (CBS. GAP_MULTIPLIERS);
CBC.Construct( CBS.GAPMULTIPLIERS )

when CBS.CONVOY =>
case User-.Selection.CONVOY -BUILDERE;NTITY .FEATURE

is
when CS.FIXED =>

CBC.Construct( CBS.FIXED )
when CS.GOVERNED =>

CBC .Construct ( CBS. GOVERNED )
end came;

when others => null;
end case;

when APP. DESTRUCT =>
case User_Selectiori.CONVOY_BUILDER_ENTITY.ENTITY is

when CBS.SUBUNIT =>
UIC.DeviceoffoApplication( CBS.SUBUNIT )
CBC .Destruct ( CBS .SUBUNIT )

When CBS. VEHICLE =>
UIC.Device...To-Aplication( CBS.VEHICLE )
CBC.Destruct ( CBS.VEHICLE )

wham CBS. CONVOY =>
CBC .Destruct ( CBS. CONVOY )
DBC.Application_To...Device( ENTITY => DBS.CONVOY,

STATUS => APP. FINALIZE )

b -m others => null;
eMA case;

when APP. FITCH =>
ease User-.Selectjou .CO VOY...BUILDERRDTITY . ETITY is

*be& Cas. GA..iND =>

CM~U8in44-Th4 107



CBC.Fetch( CBS.GAPKIND )
UIC.Application_ToDevice( CBS.GAPKIND )

when CBS.SPEED =>
CBC.Fetch( CBS.SPEED )
UIC.ApplicationTo_Device( CBS.SPEED )

when CBS.GAPDISTANCE =>
CBC.Fetch( CBS.GAP-DISTANCE )
UIC.Application -To_Device( CBS.GAP_DISTANCE )

when CBS.GAP-DISTANCES =>
CBC. Fetch C CBS .GAP_DISTANCES )
UIC.Application-To_Device( CBS.GAP_.DISTANCES);

when CBS.GAPMULTIPLIER =>
CBC.Fetch( CBS.GAPJIULTIPLIER )
UIC.ApplicationTo_Device(CBS.GAPMULTIPLIER);

when CBS.GAP-MULTIPLIERS =>
CBC.Fetch( CBS.GAP_MULTIPLIERS )
UIC .ApplicationTo_Device (CBS .GAPJMULTIPLIERS);

when CBS.CONVOY =>
UIC.Device_To_Application( DBS.CONVOY_-NAME )
DBC.Application-ToDevice( ENTITY => DBS.CONVOY,

STATUS => APP.STEADY )
loop

CBC.Fetch( CBS.CONVOYPART )
DBC.Application_To_Device( DBS.ELEMENT )
exit when CBC.Signal =CBS-COMPLETE;

and loop;
CBC.Fetch( CBS.CONVOYPARAMETERS )
DBC.Application_To_Device( DES.PARAMETERS )
DBC.Application.To_Device( EN.01TY => DBS.CONVOY,

STATUS => APP.FINALIZE )

when others => null;
end case;

end case;

when APP.ASSETMANAGER =>
case User_Selection.OPEZRA TION in

when APP. CONSTRUCT, =>
case User...Selectjon.ASSET_MANAGER...ENTITy is
when AMlS. MODEL =>

UIC.Device_ToApplication( AMS.MoDEL )
AXC.Construct( ENTITY => AMS.MODEL,

SURROGATE => APP. USER-INTERFACE )
DBC.Application-To_Device( DBS.MODEL )

when others => null;
end case;

When APP. DESTRUCT =>
case User...Selection .ASSETMANAGER DITITy is

when AKlS. MODEL =>
UIC.Device-To_..)Vpication( ENTITY => AmS.MODEL,

KIMD UIC.KEY )

lOB CMU/SEW-4-TR-8

f-^- -- , r.



AD4C.Destruct( AMS.MODEL )
DBC.ApplicationTo...Device( DBS.MODELA_ID )

when others => null;
end eame;

when APP. FETCH =>
case User-selection.ASSET_MANAGERENTITY is

when AMlS.MODEL =>
UIC.Device_ToApplication( ENTITY => AMS.MODEL,

KIND => UIC.KEY )
AMC.Fetch( AMS.MODEL );
UIC.ApplicationToDevice( AMS.MODEL )

When others => null;
end case;

end cane;

when APP.MAPPER =>
can* UserSelection.OPERATION in

when APP.CoNSTRUCT =>
case UserSelection.J4APER_ENTITY.ENTITY is

when MPS .VERTEX =>
UIC.Device-.To...Application( MPS.VERTEX )
MPC.Construct( ENTITY => MPS.VERTEX,

SOURCE => APP.USER.INTERFACE )

when 14PS.ARC =>
UIC.DeviceTo...Application( MPS.ARC )
MPC.Coustrucil ENTITY => MPS.ARC,

SOURCE -> APP.USERINTERFACE )

when I4PS .CONSTRAINTS -
CBC.Fetch( CBS.CONSTRAINTS )
MPC .Construct( C PS. CONSTRAINTS )
MPC.Fetch( MPS.CONSTRAINTS );
UIC.Application-ToDevice( MPS.ROUTE )

When others => null;
end case;

when APP. DESTRUCT =>
case UserSelection.MAPPER...ENTITY .ENTITY in

when DIPS .VERTEX =>
UIC.DeviceTo_..Application( ENTITY => MPS.VERTEX.

KIND => UIC.KEY )
* ~~MPC .Destruct( CDPS .VERTEX )

Wwhe MPS.AP.C
UIC.Device...To..Application( ENTITY => MPS.ARC,

KINM => UIC.KEY )
MPC.Destruct( I4PS.ARC )

when DIPS. CONSTRAINTS =>
MPC. Destruct ( DIPS. CONSTRAINTS )

%Is NPS.HIAP =>
MPC.Destruct( IIPS.DMap )
DDC.Application-To_.Device( ENTITY => DBS.DIAP,I CMjM8s44-ThRe 100

(-I _ _ _



STATUS => APP.FINALIZE )

when others => null;
end case;

when APP.FETCH =>
case User-Selection. MAPPER_EN1rITY. ENTITY is

when MPS.ARC =>
UIC.DeviceToApplication( ENTITY => MPS.ARC,

KIND => UIC.KEY )
MPC.Fetch( MPS.ARC );
UIC.ApplicationToDevice( MPS.ARC )

when HPS.ROUTE =>
UIC.DeviceTo_Application( MPS.ROUTE )
CBC.-Fetch ( CBS .CONSTRAINTS );
case User-Selection.MAPPERENTITY.FEATURE is

when MPS.BEST =>
MPC.Fetch( MPS.BEST )

when MPS.SATISFICE =>
null;

end case;
UIC.Applicationx_To_Device( MPS.Route )

when MPS.MAP =>
UIC.Device_To_Application( DBS.MAPNAME )
DBC.Application_To_Device( ENTITY => DBS.MAP,

STATUS => APP.STEADY )

MPC.Construct C MPS.VERTICES )
loop

MPC.Fetch( MPS.VERTICES )
exit when MPC.Signal = MPS.COMPLETE;
DBC.App,1ication _To_Device( DBS.VERTEX )

end loop;

MPC.Construct( MPS.ARCS )
loop

MPC.Fetch( MPS.ARCS )
exit when MPC.Signal =MPS.COMPLETE;

DBC.Applicationý_To_DeviceC DBS.ARC )
end loop;

UIC.DeviceToApplicationC DBS.LOGICALA_ID )
DBC.ApplicatioriTo_Device( DES.LOGICALL_ID )
DBC.ApplicatioriTo_Device( ENTITY => DBS.HAP,

STATUS => APP.FINALIZE )

when others => null;
end case;

end case;

when APP.NARCI(_TABLE =>
case User...Selectiori.OPERATION is

when APP.CONSTRUCT => null;

when APP. DESTRUCT => null;

When APP. PITCH =>

110 CMLVSB-94-TR-8

7-2~~~



case UserSelection.MARCHTABLEENTITY.ENTITY is
when MTS.MARCMTABLE �>

UIC.DeviceToApplication( IffS.MA.RCHTABLE );
CBC.Fetch( CBS.LENGTH );
CBC.Fetch( CBS.SPEED );
MTC . Destruct C lETS .MARCHTABLE );
case UserSelection .MARCHTABLEENTITY. FEATURE

in
when MTS.FORWAP..D �>

NTC.Construct C ENTITY => MTS.MARCHTABLE,
FEATURE > lETS FORWARD );

when lETS BACKWARD =>
MTC.Construct( ENTITY => MTS.MARCHTABLE,

F�ATURE > MTS.BACKWARD );

end case;
if MTC.Signal = MTS.NORMAL tben

MTC.Fetch( MTS.MARCHTABLE );
UIC.ApplicationToDevice(MTS.MARCH..�.TABLE);

else
UIC.ApplicationToDevice C

SUBSYSTEM => APP�MARCHTABLE,
MARCHTABLEERROR =>

ENTITY => MTS .MARCHTABLE,
STATUS => MTS.INVALID ) ) );

end if;

when others => null;
end case;

end case;
end case;

end loop;

-- Finalization code to close some List files opened during initialization.
DBC.Application..yoDevice( ENTITY > DBS.MODELLIST,

STATUS => ProgramState );
DBC.ApplicationToDevice C ENTITY => DBS.VEHICLELIST,

STATUS => ProgramState );
DBC.ApplicationToDevice( ENTITY => DBS.COI4BINATIONLIST,

STATUS => Progran�State );
DBC.ApplicatiorxToDeviceC ENTITY C> DBS.MAPLIST,

STATUS => ProgramState );
DBC.ApplicationToDevice( ENTITY �> DBS.CONVOYLIST,

STATUS => PrograrnState );
end Executive;

cM�o44R4 111

��7 � - _______ - _____________________



H.2 Application-Signatures

package Application-Signatures is

type ApplicationAggregate is ( USER_INTERFACE, DATA_BASE,
CONVOY_BUILDER, MARCHTABLE, MAPPER, ASSETMANAGER );

subtype Surrogate-Type is Application-Aggregate
range USERINTERFACE .. DATABASE;

subtype SubsystemType is Application-Aggregate
range CONVOY_BUILDER .. ASSETMANAGER;

type Status-Type is ( INITIALIZE, STEADY, FINALIZE );

type OperationType in ( CONSTRUCT, DESTRUCT, FETCH );

end Application_Signatures;

112 CMU/SE8-94-TR-8

. ... ... ... ,v. C -



H.3 Asset Manager Subsystem

H.3.1 Asset Manager Controller (Specification)
with Application-Signatures;
with Asset_ManagerSignatures;
package AssetManagerController is

package AMS renames AssetmanagerSignatures;
package APP renames ApplicationSignatures;

procedure Construct( ENTITY : in AMS.EntityType;

SURROGATE : in APP.SurrogateType );

procedure Destruct( ENTITY : in AMS.Entity_Type );

procedure Fetch( ENTITY in AMS.Entity_Type );

procedure Fetch( ENTITY in AMS.Entity_Type;
AS_2TYPE in AMS.EntityType );

function Signal return AMS.StatusType;

end Asset_Manager_Controller;

CMU/88-J44TR- 113

712 A



H.3.2 Asset Manager Controller (Body)

with AssetManager_Imports;
with Asset_Manager_Exports;
with Vehicle_Types;
with VehicleManager;
with Default;
package body Asset_Manager_Controller is

-- renaming declaration for package abbreviations

package AMI renames Asset_Manager_Imports;
package ANE ren aes Asset_ManagerExports;
package VM renams VehicleManager;
package VT renamis Vehicle_Types;

use Asset_ManagerSignatures;

__************* ********* *** ****** *** ********* *** *** *** ****** ************** *

-- local variables and subprograms declared here

INTERNAL_STATE : AMS.Status_Type;

-- End declarations and code for internal subprograms
__.****************************************h*********************************

-- Begin code for subprograms declared in package specification

procedure Construct( ENTITY : in AMS.EntityType;
SURROGATE : in APP.SurrogateType ) is

begin

cas, ENTITY is
when MODEL =>

VM.Construct( MODEL_ORVEHICLE => AMI.Vehicle( SURROGATE ),
KINDOFVEHICLE => VT.GENERAL );

AME.Vehicle := AMI.Vehicle( SURROGATE );

when SPECIFICVEHICLE =>
VM.Construct ( MODELORVEHICLE => AMI .Vehicle ( SURROGATE ),

KINDOFVEHICLE => VT.SPECIFIC );
AME.Vehicle := AMI.Vehicle( SURROGATE );

when VEHICLE_COMBINATION =>
VM.Construct( AMI.Combination( SURROGATE ) );
AME.Vehicle_Combination := AMI.Combination( SURROGATE );

when others => null;
eand case;

end Construct;

SVwcduwe Destruct( ENTITY in AMS.EntityType ) is
begin

case ENTITY is
when MODEL =>

VM.Destruct( AMI.Model_Or_ComboID );

114 CMU/SEI-94-TR-8I 14



when MODELS =>
VM.Destruct( VT.General );

when SPECIFIC-VEHICLE =>
VM.Destruct( AMI.VehicleID );

when VEHICLES =>
VM.Destruct( VT.Specific );

when VEHICLECOMBINATION =>
VM.Destruct( AMI.ModelOrComboID );

when COMBINATIONS =>
VM. Destruct;

end Case;
end Destruct;

procedure Fetch( ENTITY : in AMS.EntityType ) is
Done : Boolean;

begin
Case ENTITY is

when MODEL =>
VM.Fetch( MODELID => AMI.Model_Or_ComboID,

MODEL => AME.Vehicle );

when MODELS =>
VM.Fetch( KIND => VT.GENERAL,

VEHICLE => AME.Vehicle,
LAST => Done );

if Done then
INTERNALSTATE = COMPLETE;

else
INTERNAL-STATE = INCOMPLETE;

end if;

When SPEC IFIC.VEHICLE =>
VM.Fetch( VEHICLEID => AMI.VehicleID,

VEHICLE => AME.Vehicle );

when VEHICLES =>
VM.Fetch( KIND => VT.SPECIFIC,

VEHICLE => AME.Vehicle,
LAST => Done );

if Done then
INTERNAL-STATE = COMPLETE;

else
INVERNALSTATE = INCOMPLETE;

end if;

When VEHICLE_COMBINATION =>
VM.Fetch( COMBINATIONID => AMI.ModelOr_Combo_ID,

COMBINATION => AME.VehicleCombination );

when COMBINATIONS =>
V,•. Fetch ( COMBINATION => AME. VehicleCombination,

-..- , .:-•TR-4 115

U ' • ,,. • *. r, ..Ar !.e,,s _ i• , . . - . .. .. .. . . . •. .



LAST => Done )
if Done then

INTERNAL_-STATE =COMPLETE;

else
INTERNAL_-STATE =INCOMPLETE;

ead if;

when others => null;
end case;

end Fetch;

Procedure Fetch( ENTITY in AMS.Entity_Type;
ASTYPE in AMS.EritityType )is

Temp-Yehicle VT.Vehicle-Type;
Temp_.Config VT.Configured-Vehicle;
Temp-Combo VT.Vehicleý_Combination( VT.Single )

begin
case ENTITY is

when MODEL =>
case ASTYPE is

when VEHICLECOMBINATION =>
VM.Fetch( MODELID => AMI.Model_Or_ComboID,

MODEL => TempVehicle );
TempCombo.Total :=TempVehicle.Properties;
TempConfig.Vehicle :=Temp_Vehicle;
TempCombo.Prime :=TempConfig;
AME.Vehicle_Combination :=Temp-.Cmba;

when others => INTERNAL-STATE := INVALID;
end came;

when SPECIFICVEHICLE =>
case, ASTYPE is

when VEHICLECOMBINATION =>
VM.Fetch( MODELID => AMI.Model_Or_CombaID,

MODEL => TempVehicle );
TempCombo.Total :=Temp Vehicle.Properties;
TempConfig.Vehicle :=TempVehicle;
TempCozbo.Prirne := Temp-Config;
AME.Vehicle_Combination :=TempCombo;

when others => INTERNALSTATE := INVALID;
end came;

When others => INTERNAL_STATE := INVALID;
end case;

end Fetch;

funcation Signal "eturn AMlS. Statum...Type is
Status :AMlS. Status...Type =INTERNAL_STATE;

bevin
INTERNALSTATI NORMAL;
return Status;

end Signal;

116 CMMEW844R-8R

"..... .....



-- Package initialization code!
begin

INTERNAL..._STATE := INITIALIZED;
end AssetjianagerControllet;

CcMUSEI44.TA. 117

.•r~I~~



H.323 Asset Manager Signatures

package AssetManagerSignatures is

tyPe Entity-Type is (MODEL, MODELS, SPECIFICVEHICLE, VEHICLES,
VEHICLECOMBINATION, COMBINATIONS );

type StatusType is (INITIALIZED, INCOMPLETE, COMPLETE, INVALID, NORMAL);

type Error-Type is record
STATUS : StatusType;
ENTITY : Entity_Type;

emd record;

ena AssetManagerSignatures;

H.3.4 Asset Manager Imports (Specification)

with VehicleTypes;
with ApplicationSignatures;
package AssetManager_Imports in

Package APP renames ApplicationSignatures;
Package VT renazmes Vehicle-Types;

function Model-OrCombo_ID return VT.Model Type;

function Vehicle._ID return VT.Specific_.Vehicle_Id;

function Vehicle( SOURCE : in APP.Surrogate Type )
return VT.VehicleType;

function Combination( SOURCE in APP.SurrogateType )
return VT.Vehicle_Combination;

end AssetManager-Imports;

110 CWJ/EI44-TR-8

ita ,*



H.3. MAst Managier Imports (Body)

with User_Interface...Exports;
witb Data_jBase..Exports;
package body AssetjlIanager...Imports is

package UIE renames UserInterface...Exports;
package OBE reamss DataBase...Exports;

funatica ModelOrComboID return VT.Model-rype is
begin

return UIE.ModelID;
end Model-OrComboID;

unactics Vehicle_ID return VT.Specific_:Vehicle_Id is
begin

return UIE.specific_ývehicle-Id;
end vehicle...ID;

function Vehicle( SOURCE :in APP.Surrogate..Type
return Vr.Vehicle-Type is

begin
case SOURCE is

when APP. USERINTERFACE =>
return UIE.vehicle;

when APP.DATAEASE =>
return DBE.Vehicle;

end case;
end Vehicle;

function Combination( SOURCE :in APP.Surrogate...Type
return VT.Vehicle_Combination is

begin
case SOURCE is

when APP. USERINTERFACE =>
raise ProgramError;
-- return UIE.Combination;

when APP. DATAEASE =>
return DEE. Combination;

end case;
end Combination;

end Asset_14anager_.Imports;

HAG. Asse Manager Exports

with Vehicle...Types;
package Asset-Nanager....Eports is

Vehicle :Vehicls_.Typ~s .Vehicle_.Type;
vehicle-..cmbination :Vehicle...Type .VehicleCombination;

e.G AssetManager...3xOrts;

5"V~nWw M419



H.3.7 Veh Manage (SpJcficton)
with Vehicle-Types;
package vehicleManager Is

package VT re=awes Vehicle-Types;

procedure Construct( MODELORVEHICLE in VT.VehicleType;
KINDOF_VEHICLE in VT.Vehicle_State );

procedure Construct( COMBINATION : in VT.VehicleCombination );

procedure Destruct( MODELORCOMBOID : in VT.Model-Type );

procedure Destruct ( VEHICLE_WITHID : in VT. Specific_Vehicle_.ID );

procedure Destruct( KIND : in VT.VehicleState );
-- Destroys entire contents of list specified by Kind

procedure Destruct;
-- Destroys entire contents of Combinations data

procedure Fetch( MODELID : in VT.Model_Type;
MODEL : out VT.VehicleType );

procedure Fetch( VEHICLEID : in VT.Specific_VehicleID;
VEHICLE : out VT.VehicleType );

procedure Fetch( COMBINATION_ID : in VT.ModelType;
COMBINATION : out VT.Vehicle_Combination );

procedure Fetch( KIND : in VT.VehicleState;
VEHICLE : out VT.Vehiclem.Type;
LAST : out Boolean );

Procedure Fetch( COMBINATION : out VT.VehicleCombination;

LAST : out Boolean );

NotFound : eeption; -- raised if Fetch with an ID finds No Match

end Vehicle_Manager;

120 CMWmE4-TR4

mN.



HA3S Vehicle Manage (Body)
with RingSequentialUnboundedManaged._I terat or;
with Default;
package body Vehicle_Manager is

package Vehicle_Storage is new Ring...Sequential- UnboundedLManaged...Iterator
(ITEM => VT.Vehicle...Type );

package Combo_.Storage is new RingSequential-UnboundedManaged-Iterator
(ITEM => VT.VehicleCombination );

function =(L, R In VT.Model-Type ) return Boolean renames VT.'=';
function =(L. R in VT.Vehicle_State ) return Boolean renamies VT.'=';
filnction ~(L, R in VT.Specific_Vehicle_Id ) return Boolean

renaWmes VT.'=;

-- local variables and subprograms declared here

Models :Vehicle_Storage.Ring;
Vehicles :Vehicle_Storage.Ring;
Combinations :Combo_Storage.Ring;

Fetch_Active :Boolean :=False;

procedure FindModel( MODEL_ID :in VT.Model_Type;
FOUND :out Boolean ) is

begin
FOUND :=False;
Vehicle_Storage.Mark( Models )
loow

if Vehicle_Storage .Top...f ( Models ) .Properties .Model =MODEL_ID

then
Vehicle..Storage .Mark( models )
FOUND := True;

also
VehicleStorage.Rotate( The-Rying => Models,
In...The_Direction => Vehicle_Storage. Forward )

end If;
exit when VehicleStorage.At_.Mark( Models )

end loop;
end Find-model;

procedure Find-Vehicle( VEHICLE,_ID : in V.Specific...Vehicle_.Id;
FOUND :out Boolean ) is

begin
FOUND False;
Vehicle...Storage.mark( Vehicles )

if VehicleStorage.Top-.Of( Vehicles ) .Vehicle-l.d =VEHICLEI..ID then
Vehicle_.Storage .Nark ( Vehicles --A
FOUND: True;

cINlUeW-144 121

4 ~- _ _ ~121



elsO
VehicleStorage.Rotate( The_Ring => Vehicles,

In_The_Direction => VehicleStorage.Forward );
end if;
exit when VehicleStorage.AtMark( Vehicles );

end loop;
end Find-Vehicle;

proedure Find_Combo( COMBOID : in VT.ModelType;
FOUND : out Boolean ) is

begin
FOUND := False;
ComboStorage.Mark( Combinations );
loop

if Combo_Storage.TopOf( Combinations ).Total.Model = COMBOID then
ComboStorage.Mark( Combinations );
FOUND := True;

else
ComboStorage.Rotate( TheRing => Combinations,

In_The_Direction => ComboStorage.Forward );
end if;
exit when ComboStorage.AtMark( Combinations );

end loop;
end Find-Combo;

-- End declarations and code for internal subprograms

*********************** ****************************************************

-- Begin code for subprograms declared in package specification

procedure Construct( MODELORVEHICLE in VT.VehicleType;
KIND_OF_VEHICLE : in VT.Vehicle_State ) is

Old_Value : Boolean := False;
begin

case KIND_OFVEHICLE is
when VT.GENERAL =>

If not Vehicle_Storage.IsEmpty( Models ) then -- look for OLD
version

FindModel ( MODELID => MODELORVEHICLE. Properties .Model,
FOUND => Old-Value );

if Old.Value then -- Remove OLD version before Inserting NEW
Vehicle_Storage.Rotate_To_Mark( Models );
Vehicle_Storage.Pop( Models );

end if;
end 19;
Vehicle._Storage.Insert( The_Item => MODELORVEHICLE,

InTheRing => Models );

when VT.SPECIFIC =>
if not VehicleStorage.Is_Empty( Vehicles ) then -- look for OLD

data
Find-vehicle( VEHICLEID => MODELORVEHICLE.Vehicle_Id,

FOUND => Old-Value );
if Old-Value then -- Remove OLD version before Inserting NEW

Vehicle_Storage.RotateTo_Mark( Vehicles );
VehicleStorage.Pop( Vehicles );

end If;

122 CMEI4-TR-8

2WW



end if;
VehicleStorage.Insert( The_Item => MODEL_ORVEHICLE,

InThe_Ring => Vehicles );
end case;

end Construct;

procedure Construct( COMBINATION : in VT.VehicleCombination ) is
Old_Value : Boolean := False;

begin
if not Combo-Storage.Is_Empty( Combinations ) then -- look for OLD

version
Find_Combo( COMBO_ID => COMBINATION.Total.Model,
FOUND => Old_Value );
if OldValue then -- Remove OLD version before Inserting NEW

ComboStorage.RotateToMark( Combinations );
ComboStorage.Pop( Combinations );

end if;
end if;
Combo_Storage.Insert( The_Item => COMBINATION,

InTheRing => Combinations );
end Construct;

procedure Destruct( MODELORCOMBO.ID : in VT.ModelType ) is
Id_Found : Boolean := False;

begin
if MODEL_ORCOMBO_ID( 9 ) = ' then -- This is a MODEL

Find_Model( MODEL_ID => MODEL_OR_COMBO_ID,
FOUND => Id_Found );

if Id_Found then -- Remove
Vehicle._Storage.RotateToMark ( Models );
VehicleStorage.Pop( Models );

end if;
else -- This MUST be a COMBINATION

Find_Combo( COMBOID => MODEL_ORCOMBOQID,
FOUND => Id_Found );

if IdFound then -- Remove
ComboStorage.RotateToMark( Combinations );
ComboStorage. Pop ( Combinations );

end if;
end if;

end Destruct;

procedure Destruct( VEHICLE_WITH._D : in VT.Specific_VehicleID ) is
Id._Found : Boolean := False;

begin
FindVehicle( VEHICLZ_ID => VEHICLE_WITHID,

FOUND => IdFoud );
if Id_Found then -- Remove

Vehicle_Storage.RotateToMark ( Vehicles );
VehicleStorage.Pop( Vehicles );

end if,
sad Destruct;

C•WJE144-"Th8 12

7:- 4



procedure Destruct( KIND : in VT.VehicleState ) is
begin

case KIND in
when VT.GENERAL =>

VehicleStorage.Clear( Models );
when VT.SPECIFIC =>

VehicleStorage.Clear( vehicles );
end case;

end Destruct;

Procedure Destruct is
begin

ComboStorage.Clear( Combinations );
end Destruct;

Procedure Fetch( MODELID : in VT.Model_Type;
MODEL : out VT.VehicleType ) is

IdFound : Boolean := False;
begin

if not VehicleStorage.IsEmpty( Models ) then
Find_Model( MODEL_ID => MODELID,

FOUND => IdFound );
if IdFound then

VehicleStorage.Rotate_To_Mark( Models );
MODEL VehicleStorage.Top_Of( Models );

also
MODEL Default.General_Vehicle;
MODEL.Properties.Model := MODELID;

end if;
also

MODEL := Default.General_Vehicle;
MODEL.Properties.Model := MODELID;

end if;
end Fetch;

Poceduce Fetch( VEHICLEID : in VT.Specific_VehicleID;
VEHICLE : out VT.VehicleType ) is

IdFound : Boolean := False;
begin

if not VehicleStorage.Is_Empty( Vehicles ) then
FindVehicle( VEHICLEID => VEHICLEID,

FOUND => IFound );
if Id_Found then

vehicleStorage.Rotate_Tojark( Vehicles );
VEHICLE := Vehicle_Storage.TopOf ( Vehicles );

else
raise NotFound;

e•d if;
elm

raise Not-Found;

124 CMtvsEI-94-Tf 4IA



end if;
end Fetch;

procedure Fetch( COMBINATION_ID : in VT.ModelType;
COMBINATION : out VT.Vehicle_Combination ) is

IdFound : Boolean := False;
begin

if not ComboStorage.Is_Empty( Combinations ) then
Find_Combo( COMBO_ID => COMBINATIONID,

FOUND => Id-Found );
if IdFound then -- Remove OLD version before Inserting NEW

ComboStorage.Rotate_To_Mark( Combinations );
COMBINATION := ComboStorage.TopOf ( Combinations );

elme
raise Not_Found;

and if;
else

raise NotFound;
eod if;

and Fetch;

procedure Fetch( KIND : in VT.VehicleState;
VEHICLE : out VT.VehicleType;
LAST : out Boolean ) in

begin
came KIND is

when VT.GENERAL =>
if not Fetch_Active then

if VehicleStorage.IsEmpty( Models ) then
raise Not-Found;

end if;
Vehicle_Storage.Mark( Models ); -- This will be the LAST one

done!
Fetch._Active := True;

and if;
Vehicle_Storage.Rotate( TheRing => Models,

In_The_Direction => VehicleStorage.Forward );
VEHICLE := Vehicle_Storage.TopOf( Models );
if VehicleStorage.AtMark( Models ) then -- At the LAST one?

Fetch-Active := False;
LAST True;

eles
LAST False;

end if;

when VT.SPECIFIC =>
If not FetchActive then

if VehicleStorage.IsEmpty( Vehicles ) then
raise NotFound;

end if;
VehicleStorage.Mark( Vehicles );
Fetch-Active := True;

sAd if;
VehicloStorage.Rotate( TheRing -> Vehicles,

InThe_Direction => VehicleStorage.Forward );

CMU/88 117M 125

~~-7~2U7.



VEHICLE := VehicleStorage.TopOf( Vehicles );
if Vehicle_Storage.AtMark( Vehicles ) then

Fetch.Active := False;
LAST True;

else
LAST False;

end if;

and case;
end Fetch;

procedure Fetch( COMBINATION : out VT.VehicleCombination;
LAST : out Boolean ) is

begin
if not Fetch-Active then

if ComboStorage.IsEmpty( Combinations ) then
raise NotFound;

end if;
ComboStorage.Mark( Combinations );
FetchActive := True;

end if;
ComboStorage.Rotate( TheRing => Combinations,

InTheDirection => ComboStorage.Forward );COMBINATION := ComboStorage.TopOf( Combinations );
if Combo_Storage.AtMark( Combinations ) then

FetchActive := False;
LAST True;

else
LAST False;

end if;
end Fetch;

end VehicleManager;

126 CMU/SEI-94-TR-8

- -w -'.t--



HA4 Data Base Surrogate

HAI. Data Base Controller (Specification)
with Data_Base_Signatures;
with Application.Signatures;
package Data_Base_Controller is

package APP renames Application-Signatures;
packa~ge DBS renaxies Data_ýBase...Signatures;

procedure Device_To_ApplicatioriC ENTITY :in DBS.Entity-rype )

procedure ApplicationTo_Device( ENTITY :in DBS.EntityType;
STATUS :in APP.Status.Type

APP.STEADY )

function Signal return DBS.StatusType;

end Data_Base_Controller;

CMIJ/SE-94.T4a12

5 77-



H.4.2 Data Baem Controllf (Body)
with Veihicle...Types;
with Data_Base_Imports;
with Data..Base...Exports;
with DB2Iehicl1030;
with DB...Convoy-IO;
with DBHap-I0;
package body Data_Base_-Controller is

package DBE reneenes DataBaseExports;
package DBI renwws Data_Base_Imports;

-- local variables and subprograms declared here

SIGNAL_STATE :DBS.Status-Type;
CountRead :Boolean :=False;

-- End declarations and code for internal subprograms

-- Begin code for subprograms declared in package specification

procdutre DeviceroApplication( ENTITY :in DBS.Entity_Type )is
begin

case ENTITY is
when DBS.MAPNAME =>

begin
DB...MapIO.Get__apFromrLList ( DBE.Map...Name )

exception
when DB-MaPI0.E~dOf.File =>

SIGNAL_-STATE :=DBS.END_-OF-FILE;
end;

when DBS.VERTEX =>
begin

if not Count_Read then
DBE.Records_InFile :=DBJMapIO.Number~of_Vertices;
CountRead :=True;

else
D~kMapIO . Get ( DBEE.Vertex...Data )

end if;
exceptiOn

when DB_)4apI0.End_Of_File =>
SIGNAL_STATE :=DBS.END_0FFILE;
CountRead False;

end;

when DBS.ARC =>
begin

if not CountRead then
DEE. Records-In..ile := DB_...ap.1 .NumberO.f...Arcs;
Count_Read := True;

else
DBJ.Map...0.Get( DBE.ArcData.)

end if;
exception

When, DBM~p_1...O.End_..Ofyi le =>
SIGNhL.STATE DBS.END_OF_..ILE;

120 CMW/SE1-W4TR-8

Op



CountRead :=False;
end;

when DBS.LOGICALID =>
DBjMap...O .Get ( DDE .Logical-I&..Value )

when DES. MODEL =>
begin

DB_VehicleIO.GetModel( DEE.Vehicle )
except ion

when DB_Vehicle_IO.EndOf_File =>
SIGNAL_STATE :=DBS.END_OF_FILE;

end;

when DBS.MODELID =>
DBEE.ModelId := DBE.Vehicle .Properties.Model;

when DBS.SPECIFICVEHICLE =>
begin

DB_Vehicleý_IO.Get_ýVehicle( DBE.Vehicle )
exception

when DBVehicleIO.EndOfFile =>
SIGNAL,_STATE :=DBS.END_OF_FILE;

end;

when DES.VEHICLEID =
DBE.ModelId := DBE.Vehicle.Properties .Model;
DBE.Vehicle_Id :=DEE.Vehicle.Vehicle Id;

when DES.VEHICLECOMBINATION =>
begin

DEVehicle_IO.Get_Combination( DBE.Combination )
exception
when DRVehicle_IO.EidOfFile =>

SIGNALý_STATE := DBS.ENDý_OFFILE;
end;

when DBS.COMBINATIONID =>
DBE.modelId :=DBE.Combination.Total.Model;

when DES. CONVOYNAME =>
begin

DBý-onvoyIO .Getonvoy...FromList C DEE. Convoy..yame )
exception
when DE..Convoy....o.Ead_Of_File =>

SIGNALý_STATE := DES.END_OF..FILE;
end;

when DES. ELEMENT =>
begin

if not CountRead then
DEE.Records_In_File : DE_-Convoy...IO.NumberOf_Elements;
CountRead := True;

DE..Convoy-.IO .Get C DBE. Convoy..yart )
end if;

exception
when DB_Convoy..0..IB n&OfFile =>

SIQIAL..STATE :=DBS.NDOFFILE;

OMLU/SB--TR4



Count_Read False;
end;

when DBS. PARUAMETERS =>
DB,_ConvoyI.30Get C DBE.Convoy...Data )

when others => null;
en4 ca&";

and Device-To ýication;

procedure Application_TO_Device( ENTITY :in DBS.Entity...Type;
STATUS :in APP.Status-Type

APP.STEADY ) is
begin

case ENTITY is
when DBS.MAP_LIST =>

case STATUS is
when APP.INITIALIZE =>

DBjIMap...IO.Open_ListFile;
DBE.Records_InFile :=DB..YapIO.NuniberOfMaps;

when APP.STPEADY => null;

when APP.FINMJIZE =>
DB...Nap..IO.Close_List_File;

end case;

when DBS.NAP =>
case STATUS is

when APP.INITIALIZE =>
begin

DBNHapIO.Open.Map...Files( Name => DBI.Nap_Name,
Mode => DENap...IO .Input )

umaeptioaa
when DB...Nap-IO. Invalid-NapName =>

SIGNAL_STATE :=DBS.NOT_FOUND;
end;

when APP. STRADY =>
DB....ap-.IO .Open-.Jap_..iles C Name => DBI. NapName,

Node => DBJmap..o..O.Output )
DEJ14ap-.IO .Put-J aplIn..List C DBI .NapName )

When APP.FINALIZE =>
DBj-Map..IO.Close~jlap..,Files;

end case;

when DES. M&PJ(M =>
DEJ-ap..IO .Deletejlfap...Files C DBI .HapName )
DBJMaP...IO. RemoveJap-FrozzLList C DBI. Nap...aine

wVen DES. VERTEX =

DSJap_1....PutC DBI. Get_Vertex )

vWhe DBS.ARC =>
DR-MvpIO .Put ( DBII Get-Arc )

when D8S.VWGICAIID =>

13D CtdtvsE,4-TR-8



DE_!4ap..IO.Put( VBI.LogicaL.Id_.Value )

when DBS.MODEL...LIST =>

case STATUS is
when APP.INITIALIZE =>

DBVehicle...IO.open-Models-File;
DBE.Records...InFile :=DE_Vehicle_IO.Numberý_Of_Models;

when APP.STEADY => null;

when APP.FINALIZE =>
DBVehicle...IO.Close-Models-File;

end case;

when DBS.MODEL =>

DB_-VehicleIO0.PutModel( DEI.GetVehicle )

when DBS.MODELID =>
DBVehicle...IO.RemoveModel( DBI.GetVehicle )

when DBS.VEHICLELIST =>
case STATUS is

when APP.INITIALIZE =>
DBVehicle-IO .Open2JVehicles-File;
DBE.Records_In_File :
DB_ýVehicle_IO.Numiber-Of_ýVehicles;

when APP.STEADY => null;

when APP.FINALIZE =>
DE_-VehicleIO.Close...Vehicles-File;

end case;

when DBS.SPECIFICVEHICLE =

.DEVehicleIO.PutVehicle( DBI.GetVehicle )

When, DBS.VEHICLEý_ID =>
DBVehicleIO.RemoveVehicle( DBI.GetVehicle )

Milen DBS. COI4BINATION_LIST =>
came STATUS is

when APP. INITIALIZE =>
DE_VehicleIO .Open.._Combinations....ile;
DBE.Records_In_File :
DBVehicle...IO.Number-..OfCombinations;

when APP.STRADY => null;

when APP.FINALIZE =>
DBVehicle-jO.CloseCoinbinations..File;

end came;

Whems DBS. VEHICLECOIIDINATION =>
DBVehicleIO.-PutCombiriation( DBI.Get_Combination )

when DBS. CONBINTIONID =>

DB..Vehicle...IO.RemoveCombiriation( DBI .Get-Combination )

when DBS.COUVOY...LIST Z>13

CMU/E9404-TR613



ease STATUS is
when APP.INITIALIZE =>

DEý_Convoy..10.Open-List_File;
DBE.Records_InFile := DBConvoy..jO.NumberOfConvoys;

when APP.STEADY => null;

when APP.FINALIZE =>
DEk_ConvoyIO.Close -List_File;

end CAse;

when DES .CONVOY =>

case STATUS is
when APP. INITIALIZE =>

DBý_Convoy_IO.Opens-onvoy...Files( DBI.ConvoyName,
DEConvoy..IO.Input )

when APP.STEADY =>
DB_Convoy-IO0 pen.Convoy-Files ( DBI .Convoy-Nanme,

DE_ConvoyIO .Output );
DEý_Convoy_10. PutConvoy...IrLList C DBl .Convoy_.Name )

when APP.FINALIZE =>
DBý_ConvoyIO . CloseConvoyFiles;

end case;

when DES.CONVOY_NAME =>
DEConvoyIO .DeleteConvoy-Files ( DBl .Convoy...Name )
DB_ConvoyIO . Remove_ConvoyFroTLList C DB .ConvoyNaxne

when DBS.ELEMENT =>
DE_Convoy_10. Put C DBI .Get__Convoy..Part )

when DES .PARAMETERS =>
DE_Convoy_10. Put ( DBl .Get_Convoy...Parameters )

end case;
eOM Application_To_Device;

function Signal return DBS.Status-l'ype is
Status : DBS.Status_Type :=SIGNAL_STATE;

begin
SIGNAL-..STATE := DBS.NORKAL; -- RESET upon READ!
return Status;

and Signal;

beg"n
SIGIAL...STArx :a DSS. INITIALIZED;

end Data-flseController;

- 4 7



H.4.3 Data Baks Signatures

package Data_BaseSignatures is

type Entity-Type is (MAPLIST, MAP, MAP-NAME, VERTEX, ARC, LOGICALID,
MODELLIST, MODEL, MODELID, VEHICLE LIST,
SPECIFICVEHICLE, VEHICLEID, COMBINATION_LIST,
VEHICLECOMBINATION, COMBINATIONID, CONVOY-LIST,
CONVOY, CONVOY_NAME, ELE(ENT, PARAMETERS );

type StatusType in ( INITIALIZED, NOTFOUND, END_OF_FILE, NORMAL );

type Error-Type is record
STATUS : Status-Type;
ENTITY : EntityType;

w,' record;

end iBaseSignatures;

CMU/8sE04TR4 133



H.4.4 Data Base Types
with ConvoyBuilder-Types;
with Vehicle-Types;
with Measurement-Types;
Pckage DB Types is

MaxName_.Length : constant Positive := 20;

-- Data construct to store Convoy Vehicle and organization info.

package CBT renames ConvoyBuilderTypes;

type ConvoyElement_Type( Level : CBT.LevelsType := CBT.Vehicle ) is
record

case Level is
when CBT.LevelsType'Last =>

Info : Vehicle_Types.VehicleCombination;

when others => null; -- will be Internal_Org info. in future!
ae case;

end record;

-- Data constructs to store other Convoy dependent Parameters

subtype Number_Of_Levels is Natural range 0 ..
CBT.LevelsType'Pos( CBT.LevelsType'Last );

type Fixed_Gap_Data is array ( Number_Of_Levels ) of
MeasurementTypes. Distance_Measurement;

type Governed_GapData is array ( Number_Of_Levels ) of
MeasurementTypes. Gap_MultiplierType;

type Int__.OrgedLevels is array NumberOf_Levels range <> ) of
CBT.Levels_Type;

type ConvoyParameters-Type( Governed Boolean := True;
Org_Levels . Number_Of_Levels

Number_OfLevels'Last ) is
record

Average-Speed : Measurement_Types. Rate_Measurement;
OrgData : IntOrged_Levels( 1 .. Org_Levels );
ca&e Governed is

when True =>
GovernedGaps : Governed_GapData;

when False =>
Fixed-Gaps FixedGapData;

end case;
end record;

end DBTypes;

•InZ

134 CM.I,. •-4-4T4

AW hY.



HAS. Data Bass Imports (Specification)

with vehicle-..Types;
with IMaprypes;
with DB..Types;
package Data_Base...ImportS is

function Get_Vehicle return Vehiclel'ypes.Vehicle...Type;

function GetCombinatiofl return VehicleTypes.Vehicle_2Combination;

function MapName return String;

function Get_ýVertex return Nap-Types.Vertex-rype;

function GetArc return Map-Types.Arc-Type;

function Logical.Id-Value return Natural;

function ConvoyNanie return String;

function Get_ Convoy-Part return DBTypes.Convoy-ElementType;

function Get_..Convoy..yarameters return DB-Types.Convoy-ParametersType;

end Data_Base_Imports;

H.4.6 Data Base Imports (Body)
with Asset.)lanager-Exports;
with UserInterface-.Exports;
with ConvoyBuilder...Exports;
with Mapper-..Exports;
package body DataBaseImports is

package A24E renamies Asset..Manager_.Exports;
package CBE renamies Convoy-Builder...Exports;
package Z4PE ren nas MapperExports;
package UIE renamies User_Interface...Exports;

function Get_ýVehicle return VehicleTypes.Vehicle-Type is
begin

return AME.Vehicle;
end GetVehicle;

function Get_Combination return VehicleTypes .Vehicle-Combination is
begin

return JUIE.VehicleCombination;
end Get-Combination;

function Map-Name return String is
begin

return Uill.Nap..Name;
e=A HAp.Jame;

CMU/SE144-TR.S 135



function Get_Vertex return MapTypes.Vertex-rype is
begin

return MPE .Vertex;
end Get_Vertex;

function Get_Arc return MapTypes.ArcType is
begin

return MPE.Arc;
end Get-Arc;

function Logical_IdValue return Natural is
begin

return UIE.VertexId;
end Logic a11&.Value;

function Convoy-Name return String is
begin

retun= UIE. Convoy..Yame;
end Convoy-.Namne;

function GetConvoyPart return DBTypes.Convoy-El-mentjl'ype is
begin

return CBE.Convoy-Part;
end Get_Convoy.Part;

function GetConvoy-Parameters return DB-Tpes.Convoy-Paraxneters..Type is
begin

return CBE. Parameters;
end Get_CQonvoy-.Parameters;

end Data_Base_Imports;

H.4.7 Data Base Exports
with Vehicle-Types;
with MapTypes;
with Default;
with DB-Types;
Package DataBase-Exports is

Records_In_File :Natural;

ModelId :VehicleTypes.Model..Type;
VehicleId -. VehicleTypes.Specific2Jehicle....d;
Vehicle :Vehicle...Types.Vehicle-l'ype :=Default.General-Nehicle;
Combination :Vehicle...Types .Vehicle-Corbination;

Convoy-Name :String ( 1 .. DBType.SMax_.Name_Length )
Convoy..yartDB....Types.Convoy_Element_Type;
Convoy-..Data :DB...Types.Convoy_Parametersrype;

Map-Name :String(C 1 .. ...Types.Max-yainej.ength )
Vertex..Data :MapTypes.Vertex_.Type;
Arc-Data :Map...Types.Arc...Type;
Logica~lIdValue :Natural;

eind Dat.BaJase.3xcports;

136 CMUW88-44-TR-s



HAS. Vehicle_10 Handler (Spec~ifcatIon)
with Vehiclej!Ypes;
package DBVehicle_10 im

procedure Open,_Models_File;

function NumberOfjModels return Natural;

procedure Put-Mjodel( vehicle in Vehicle-Types.Vehicle_Type )

procedure Get-Mjodel( Vehicle out Vehicle-Types.Vehiclerype )

procedure Remove_ModeiC Vehicle: in Vehicle...Types.VehicleType )

procedure Close__Models-File;

procedure OpenVehiclesFile;

function Number_Of_Vehicles return Natural;

procedure Put-Vehicle( vehicle :in Vehicle-Types.Vehicle-rype )

procedure Get...ehicle( vehicle :out Vehicle-Types.Vehicle-Type )

procedure Remove_VehicleC Vehicle :in vehicle-Types.Vehicle-rype )

procedure Close_Vehicles...File;

procedure OpenCombinationsFile;

function Number_Of_Combinations return Natural;

procedure Put-Combination ( Combo in Vehiclerypes.Vehicle_ýCombination);

procedure Get-..Combination (Combo out Vehicle-rypes .Vehicle_Combination);

procedure Remove_Combination ( Combo: in
Vehiclerypes.Vehicle_ýCombination )

procedure Close_.CombinationsFile;

End-OfFile : xception; -- raised by any Get that attempts a read past EOF

end DBVehicle_10;

71

CMU/SEn44.TR-8 137



H.4.9 Vehicle_10 Handler (Body)
with Direct...Io;
with FileData;
package body DBVehicle_10 in

package VehIO is new Direct-IO( VehicleTypes.VehicleType )
package Combo_10 in new Direct-.I0( VehicleTypes.Vehicle_2Combination )

function ~(L, R in Vehicle-Types.Model-Type ) return Boolean
renkaiss Vehicle-l'ypes. '=';

function =CL, R in Vehicle-Types. Spec if i c..ehicle_Id ) return Boolean
ren amis aVehicle-Types.ff=*;

function *=ff L, R in Vehicle-Types. VehicleCombinat ion ) return Boolean
renames Vehicle-Types. *=-;

Model_File :Veh_I0.File-Type;
Vehicle_ýFile :VehI0.FileT.ype;
Combination.File :Combo-IO.Filerype;

procedure OpenModels__File in
begin

Veh_1.0.Open( File => ModelFile,
Mode => VehIo.InoutFile,
Name => FileData.Path & 'Models.LST*)

exception
when Veh.IO.Name_Error =>

Veh_I0.Create( File => Model_File,
Mode => VehIo.Inout_File,
Name => FileData.Path & "Models.LSTI)

when others => raise;
end Open-eodelsFile;

function Number_Of_Models return Natural is
begin

return Natural( Veh_I0.SizeC ModelFile ))
exception

when others => return 0;
end Number-OfModels;

procedure Put-Model( Vehicle :In Vehicle-l'ypes.Vehicle...Type is1
DB_Data :Vehiclerypes.Vehiclerype;
Written :Boolean :=False;

begin
for Index in 1. .Veh....I.Size( modelFile ) loop

Veh-IO.Read( File => ModelFile,
Item => DB..Data,
From => Index );

if DB...Data.Properties.Model = Vehicle.Properties.Model then
Veh...Io.Write( File => ModelFile,

Item => Vehicle,
To => Index )

Written :uTrue;

end it;

180 CMUIBB-44-TR-8



*ad loop;
if not Written then

Veh_1o.Write( File => ModelFile,
Item => Vehicle )

end if;
end Put_Model;

procedure GetModel( Vehicle :out Vehiclejl'ypes.VehicleType )is
begin

VehIO.Read( File => Model_File,
Item => Vehicle )

exception
when Vehk.Io.End_Error => maisa End_Of_File;

end Get_-Model;

procedure Remove__ModelC Vehicle :in Vehicle-Types.VehicieType )is
DB_ýData :VehicleTypes.VehicleType;
TempFile :VehIO.File-Type;

begin
Veh_-IO.Create( File => TenpFile,

Mode => Veh.IO.IrioutFile,
Name => FileData.Path & 'Models.TLSTI)

for Index in 1. .Veh_IO.Size( Mode) _File ) loop
VehIO.Read( File => ModelFile,

Item => DEData,
From => Index ):

if DB_Data.Properties.Model /= Vehicle.Properties.Model then
VehIO.Write( File => TempFile,

Item => DB...Data )
end if;

end loop;
Vehk_Io.Delete( Model-File )
Veh-IO.Create( File => ModelFile,

Mode => VehIO.IrioutFile,
Name => File_ýData.Path & "Models.LSTI)

for index in 1. .VehIO.Size( Teinp_.File )loop
Veh_IO.Read( File => Temp.Ffile,

Item => DBData,
From => Index );

VehIO.Write( File => Model.File,
Item => DBData )

end loop;
Veh....IO.Delete( Temp..yile )

end RemoveModel;

procedure CloseModels-File is
begin

vekL-IO.Close( Model.ýFile )
end Close-Models...File;

procedure Operi-jehicleaFile is
begin

Veh-IO.Open( File => Vehicle-..File,
Mode => Veh....o.Inout_File,
Namne => File...Data.Path~ & Vehicles.LSTI)

exception
when Vah-IO. Name...rror =>

Ctdu/SEW-.TP4 iSS

----- --- -

Ll WAX



Veh_IO.Create( File => VehicleFile,
Mode => VehIo.InoutFile,
Name => FileData.Path & *Vehicles.LST );

when others => raise;
end OpenVehiclesFile;

function Number_Of_Vehicles return Natural is
begin

return Natural( Veh_IO.Size( Vehicle-File ) );
exception

when others => return 0;
end Number_Of_Vehicles;

procedure PutVehicle( Vehicle : in VehicleTypes.VehicleType ) is
DBData Vehicle_Types.Vehicle_Type;
Written Boolean := False;

begin
for Index in 1..Veh_IO.Size( Vehicle_File ) loop

VehIO.Read( File => Vehicle-File,
Item => DBData,
From => Index );

if DB_Data.Vehicle_Id = Vehicle.VehicleId then
VehIo.Write( File => VehicleFile,

Item => Vehicle,
To => Index );

Written := True;
exit;

end if;
end loop;
if not Written then

VehIo.Write( File => Vehicle-File,
Item => Vehicle ),

end if;
end PutVehicle;

procedure Get_Vehicle( Vehicle : out VehicleTypes.VehicleType ) is
begin

Veh_IO.Read( File => Vehicle-File,
Item => Vehicle );

exception
when Veh_Io.End.Error => raise End_Of_File;

end Get_Vehicle;

procedure Remore_Vehicle( Vehicle : in Vehicle_Types.Vehicle Type ) is
DBData : iehicleTypes.VehicleType;
TempFile : Veh_IO.FileType;

begin
VehIO.Create( File => TenpFile,

Mode => Veh_IO.Inout_File,
Name => FileData.Path & 'Vehicles.TLST );

for Index in 1..VehIO.Size( Vehicle-File ) loop
Veh-IO.Read( File => VehicleFile,

Item => DB_Data,
From => Index );

if DB_Data.VehicleId /= Vehicle.Vehicle_Id then
VehLIO.Write( File => Temp_File,

Item => DEData );
end if;

end loop;

140 CMU/SEi-94-TRI-



Veh.Io.Delete( VehicleFile )
VehIO.Create( File => VehicleFile,

Mode => Veh-IO.Inout...File,
Name => File-Data.Path & Wehicles.LST-)

for Index in 1. .Vehi_IO.Size( Temp...File )loop
VehIO.ReadC File => TempFile,

Item => DR-..Data,
From => Index );

Veh-IO.Write( File => Vehicle_File,
Item => DB-..Data )

end loop;
Veh_IO.Delete( TempFile )

end Removevehicle;

procedure Close_Vehicles_File in
begin

VehIO.Close( Vehicle_File )
end Close_Vehicles_File;

procedure open-Combinations_File is
begin

ComboIO.Open( File => Combination-File,
Mode => ComboIo.Inout-File,
Name => File..Data.Path & 'Combinations.LST' )

exception
when Combo_IO.Name_Error =>

Combo-IO.Create( File => Combination-File,
Mode => Combo_-Io.Inout_File,
Name => File-Data.Path & "Combinations.LSTI)

when others => raise;
end openCombinati ons.Fi le;

function Number_Of_Combinations return Natural is
begin

return Natural( ComboIO.Size( Combination..yile ))
exception

when others => return 0;
end NumberOfCombinations;

procedure Put_-Combination
(Combo :in Vehicle-rypes.Vehicleý_Combination )is

DBData Vehicl4Eý_ypes.VehicleCombination;
Written Boolean :=False;

begin
for Index in 1. .ComboIO.Size( Combination.File )loop

Combo-IO.Read( File => Combinationk_File,
Item => DB...Data,
From => Index )

if DE_Data = Combo then
Combo-.Io.Write( File => Combination_File,

Item => Combo,
To => Index )

Written :=True;
exit;

end If;
end loop;

if not written then

CMdu/SEI.04-TR4S 141

--t-~ i~ 'tZi.ý ý4 Ak



Combo~lo.Write( File => Combination-File,
Item => Combo )

end if;
ead Put_2ombination;

procedure GetCombination
(Combo out Vehicle-..Types,.Vehicle_Combinat ion )is

begin
ComboI0.Read( File => CombinationFile,

Item => Combo )
exception

when Combo_.Io.EndError => raise EndofFile;
end Get-Combination;

procedure Remove_Combination
(Combo :in Vehicle-Types.Vehicle-Combination )is

DB_Data :Vehicle_Types.VehicleCombination;
TempFile :Combo_IO.FileType;

begin
ComboIO.Create( File => Temp..File,

Mode => Combo_I0.Inout..yile,
Name => FileData.Path & ýCombinations.TLST )

for Index in 1. .ComboIO.Size( Combination_-File )loop
Combo...IQ.Read( File => Combiriation.File,

Item => OB...Data,
From => Index )

if DB-Data /= Combo then
Combo_IO.Write( File => TempFile,

Item => DB_Data )
end if;

end loop;
ComboIo.Delete( Combination-File )
ComboIo.Create( File => CombinationFile,

Mode => Combo-IO.Inout-File,
Name => File_Data.Path & 'Combinations.LST')

for Index in 1. .Combo_IO.Size( TeipFile ) loop
Combo...IO.Read( File => Tenip...File,

Item => DB...Data,
From => Index );

ComboI0.Write( File => Combination-.File,
Item => DB.Data )

end loop;
Combo_IO.Delete( Temp~yile )

end Remove-Combination;

procedure Close_.Combinations_.File is
begin

ComboIO.Close( Combination...File )
end Close_Combinations_.File;

end DBVehicle-.IO;

142 CMU/SEI-94-TR-8

Z.~



UNLIMIED. UNCLASIFED

REPORT DOCUMENTATION PAGE
I& REPOR SECURITY CL.ASS IPICATION Ilb, RESTRICTIVE MARKINGIS

UnclasifiedNone
2L. SECURITY CLASSIFICATMO AUTHORITY 3. DISTRIBWTIONIAVAILABU.IY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-94-TR-8 ESC-TR-94-008

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a& NAME OF MONITORING ORGANIZAITON

Software Engineering Institute (fapibl) SEI Joint Program Office

6c. ADDRESS (city. satac and zip code) 7b. ADDRESS (city, atw, and zip code)

Carnegie Mellon University HO ESC/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116
S8& NAME OFFUNDINGISPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (il'applicable) F1 962890C0003
SEI Joint Program Office ~ ,ESOENS

Sc. ADDRESS (city, state, and zip code)) 10. SOURCE Of FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO N~O. NO NO.

63756E N/A N/A N/A
11. TITfLE (Include Security Clanaificadon)

Mapping a Domain Model and Architecture to a Generic Design
12. PERSONAL AUTHOR(S)

A- Spencer Peterson, Jay L. Stanley, Jr.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18_____I. SUBJECT TERMS (continue on wrevre of necessary and identify by block number)
FIELD j GROUP SUB. OR.ý

19. ABSTRACI (contfinue on Wevan if nocemmy and aidetf by block number)

In contrast to the number of reports on domain analysis, little work has been done in describing the
utilization of domain analysis results in the development of generic designs for building applications
in a domain. This report describes a process for mapping domain information in Feature-Oriented
Domain Analysis (FODA) into a generic design for a domain. The design includes supporting code
components that conform to the Object Connection Architecture (OCA), a model for structuring soft-
ware systems. A process for the use of the design in implementing applications is included. The pro-
cesses and products described herein augment the final phase of domain analysis (or engineering)

20. rRIUTRAVAABIITYOF BSTACT21. ABSIRACI SECURITY O..ASSIFICX[ION

UNCA~SSIP111DAMEunD* SAM sAws~ R am uncms Il Unclassified, Unlimited Distr~utio

Z~.NAME OW RESPONS3LE INOSIWUAL Z2b. TELEPHON4E NUMBER (Includle amend.) 22c. OPRCE SYNBOL

Thomas R. 101111r, Lt Col, USAF(4226731ECNSfEQ

DD FORM 1473,83 APR EDITION of I JAN I3 S OBSOLETE IJNLO1TD. WCASURW

a~~3 7~-. . .~ 7 .~.. '.~'~ @ m7E



Il dmed hm pg ow, biok 19

described in the original FODA report. This report also documents the continuing work of apply-
ing FODA to the movement control domain. The design and Ada code examples for the domain
used in the document are from prototype software, created in part to test the processes pre-
sented.

pA

11 0 Al A,~*~*~-. . -


